63 resultados para velocity distributions
em CentAUR: Central Archive University of Reading - UK
Resumo:
By modelling the average activity of large neuronal populations, continuum mean field models (MFMs) have become an increasingly important theoretical tool for understanding the emergent activity of cortical tissue. In order to be computationally tractable, long-range propagation of activity in MFMs is often approximated with partial differential equations (PDEs). However, PDE approximations in current use correspond to underlying axonal velocity distributions incompatible with experimental measurements. In order to rectify this deficiency, we here introduce novel propagation PDEs that give rise to smooth unimodal distributions of axonal conduction velocities. We also argue that velocities estimated from fibre diameters in slice and from latency measurements, respectively, relate quite differently to such distributions, a significant point for any phenomenological description. Our PDEs are then successfully fit to fibre diameter data from human corpus callosum and rat subcortical white matter. This allows for the first time to simulate long-range conduction in the mammalian brain with realistic, convenient PDEs. Furthermore, the obtained results suggest that the propagation of activity in rat and human differs significantly beyond mere scaling. The dynamical consequences of our new formulation are investigated in the context of a well known neural field model. On the basis of Turing instability analyses, we conclude that pattern formation is more easily initiated using our more realistic propagator. By increasing characteristic conduction velocities, a smooth transition can occur from self-sustaining bulk oscillations to travelling waves of various wavelengths, which may influence axonal growth during development. Our analytic results are also corroborated numerically using simulations on a large spatial grid. Thus we provide here a comprehensive analysis of empirically constrained activity propagation in the context of MFMs, which will allow more realistic studies of mammalian brain activity in the future.
Resumo:
Observations by the EISCAT experiments “POLAR” and Common Programme CP-3 reveal non-Maxwellian ion velocity distributions in the auroral F-region ionosphere. Analysis of data from three periods is presented. During the first period, convection velocities are large (≈2 km s-1) and constant over part of a CP-3 latitude scan; the second period is one of POLAR data containing a short-lived (<1 min.) burst of rapid (>1.5 km s-1) flow. We concentrate on these two periods as they allow the study of a great many features of the ion-neutral interactions which drive the plasma non-thermal and provide the best available experimental test for models of the 3-dimensional ion velocity distribution function. The third period is included to illustrate the fact that non-thermal plasma frequently exists in the auroral ionosphere: the data, also from the POLAR experiment, cover a three-hour period of typical auroral zone flow and analysis reveals that the ion distribution varies from Maxwellian to the threshold of a toroidal form.
Resumo:
The contribution to the field-aligned ionospheric ion momentum equation, due to coupling between pressure anisotropy and the inhomogeneous geomagnetic field, is investigated. We term this contribution the “hydrodynamic mirror force” and investigate its dependence on the ion drift and the resulting deformations of the ion velocity distribution function from an isotropic form. It is shown that this extra upforce increases rapidly with ion drift relative to the neutral gas but is not highly dependent on the ion-neutral collision model employed. An example of a burst of flow observed by EISCAT, thought to be the ionospheric signature of a flux transfer event at the magnetopause, is studied in detail and it is shown that the nonthermal plasma which results is subject to a hydrodynamic mirror force which is roughly 10% of the gravitational downforce. In addition, predictions by the coupled University College London-Sheffield University model of the ionosphere and thermosphere show that the hydrodynamic mirror force in the auroral oval is up to 3% of the gravitational force for Kp of about 3, rising to 10% following a sudden increase in cross-cap potential. The spatial distribution of the upforce shows peaks in the cusp region and in the post-midnight auroral oval, similar to that of observed low-energy heavy ion flows from the ionosphere into the magnetosphere. We suggest the hydrodynamic mirror force may modulate these outflows by controlling the supply of heavy ions to regions of ion acceleration and that future simulations of the effects of Joule heating on ion outflows should make allowance for it.
Resumo:
Recent observations from the EISCAT incoherent scatter radar have revealed bursts of poleward ion flow in the dayside auroral ionosphere which are consistent with the ionospheric signature of flux transfer events at the magnetopause. These bursts frequently contain ion drifts which exceed the neutral thermal speed and, because the neutral thermospheric wind is incapable of responding sufficiently rapidly, toroidal, non-Maxwellian ion velocity distributions are expected. The EISCAT observations are made with high time resolution (15 seconds) and at a large angle to the geomagnetic field (73.5°), allowing the non-Maxwellian nature of the distribution to be observed remotely for the first time. The observed features are also strongly suggestive of a toroidal distribution: characteristic spectral shape, increased scattered power (both consistent with reduced Landau damping and enhanced electric field fluctuations) and excessively high line-of-sight ion temperatures deduced if a Maxwellian distribution is assumed. These remote sensing observations allow the evolution of the distributions to be observed. They are found to be non-Maxwellian whenever the ion drift exceeds the neutral thermal speed, indicating that such distributions can exist over the time scale of the flow burst events (several minutes).
Resumo:
A finite element numerical study has been carried out on the isothermal flow of power law fluids in lid-driven cavities with axial throughflow. The effects of the tangential flow Reynolds number (Re-U), axial flow Reynolds number (Re-W), cavity aspect ratio and shear thinning property of the fluids on tangential and axial velocity distributions and the frictional pressure drop are studied. Where comparison is possible, very good agreement is found between current numerical results and published asymptotic and numerical results. For shear thinning materials in long thin cavities in the tangential flow dominated flow regime, the numerical results show that the frictional pressure drop lies between two extreme conditions, namely the results for duct flow and analytical results from lubrication theory. For shear thinning materials in a lid-driven cavity, the interaction between the tangential flow and axial flow is very complex because the flow is dependent on the flow Reynolds numbers and the ratio of the average axial velocity and the lid velocity. For both Newtonian and shear thinning fluids, the axial velocity peak is shifted and the frictional pressure drop is increased with increasing tangential flow Reynolds number. The results are highly relevant to industrial devices such as screw extruders and scraped surface heat exchangers. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The activation of aerosols to form cloud droplets is dependent upon vertical velocities whose local variability is not typically resolved at the GCM grid scale. Consequently, it is necessary to represent the subgrid-scale variability of vertical velocity in the calculation of cloud droplet number concentration. This study uses the UK Chemistry and Aerosols community model (UKCA) within the Hadley Centre Global Environmental Model (HadGEM3), coupled for the first time to an explicit aerosol activation parameterisation, and hence known as UKCA-Activate. We explore the range of uncertainty in estimates of the indirect aerosol effects attributable to the choice of parameterisation of the subgrid-scale variability of vertical velocity in HadGEM-UKCA. Results of simulations demonstrate that the use of a characteristic vertical velocity cannot replicate results derived with a distribution of vertical velocities, and is to be discouraged in GCMs. This study focuses on the effect of the variance (σw2) of a Gaussian pdf (probability density function) of vertical velocity. Fixed values of σw (spanning the range measured in situ by nine flight campaigns found in the literature) and a configuration in which σw depends on turbulent kinetic energy are tested. Results from the mid-range fixed σw and TKE-based configurations both compare well with observed vertical velocity distributions and cloud droplet number concentrations. The radiative flux perturbation due to the total effects of anthropogenic aerosol is estimated at −1.9 W m−2 with σw = 0.1 m s−1, −2.1 W m−2 with σw derived from TKE, −2.25 W m−2 with σw = 0.4 m s−1, and −2.3 W m−2 with σw = 0.7 m s−1. The breadth of this range is 0.4 W m−2, which is comparable to a substantial fraction of the total diversity of current aerosol forcing estimates. Reducing the uncertainty in the parameterisation of σw would therefore be an important step towards reducing the uncertainty in estimates of the indirect aerosol effects. Detailed examination of regional radiative flux perturbations reveals that aerosol microphysics can be responsible for some climate-relevant radiative effects, highlighting the importance of including microphysical aerosol processes in GCMs.
Resumo:
A global, time-dependent, three-dimensional, coupled ionosphere-thermosphere model is used to predict the spatial distribution of non-thermal plasma in the F-layer. It is shown that, even for steady-state conditions with Kp as low as 3, the difference between the ion and neutral velocities often exceeds the neutral thermal speed by a factor, D', which can be as large as 4. Theoretically, highly non-Maxwellian, and probably toroidal, ion velocity distributions are expected when D' exceeds about 1.5. The lack of response of the neutral winds to sunward ion drifts in the dawn sector of the auroral oval cause this to be the region most likely to contain toroidal distributions. The maximum in D' is found in the throat region of the convection pattern, where the strong neutral winds of the afternoon sector meet the eastward ion flows of the morning sector. These predictions are of interest, not only to radar scientists searching for non-thermal ionospheric plasma, but also as one possible explanation of the initial heating and upward flows of ions in the cleft ion fountain and nightside auroral oval, both of which are a major source of plasma for the magnetosphere.
Resumo:
A number of recent experiments suggest that, at a given wetting speed, the dynamic contact angle formed by an advancing liquid-gas interface with a solid substrate depends on the flow field and geometry near the moving contact line. In the present work, this effect is investigated in the framework of an earlier developed theory that was based on the fact that dynamic wetting is, by its very name, a process of formation of a new liquid-solid interface (newly “wetted” solid surface) and hence should be considered not as a singular problem but as a particular case from a general class of flows with forming or/and disappearing interfaces. The results demonstrate that, in the flow configuration of curtain coating, where a liquid sheet (“curtain”) impinges onto a moving solid substrate, the actual dynamic contact angle indeed depends not only on the wetting speed and material constants of the contacting media, as in the so-called slip models, but also on the inlet velocity of the curtain, its height, and the angle between the falling curtain and the solid surface. In other words, for the same wetting speed the dynamic contact angle can be varied by manipulating the flow field and geometry near the moving contact line. The obtained results have important experimental implications: given that the dynamic contact angle is determined by the values of the surface tensions at the contact line and hence depends on the distributions of the surface parameters along the interfaces, which can be influenced by the flow field, one can use the overall flow conditions and the contact angle as a macroscopic multiparametric signal-response pair that probes the dynamics of the liquid-solid interface. This approach would allow one to investigate experimentally such properties of the interface as, for example, its equation of state and the rheological properties involved in the interface’s response to an external torque, and would help to measure its parameters, such as the coefficient of sliding friction, the surface-tension relaxation time, and so on.