13 resultados para unified framework
em CentAUR: Central Archive University of Reading - UK
Resumo:
Automatic generation of classification rules has been an increasingly popular technique in commercial applications such as Big Data analytics, rule based expert systems and decision making systems. However, a principal problem that arises with most methods for generation of classification rules is the overfit-ting of training data. When Big Data is dealt with, this may result in the generation of a large number of complex rules. This may not only increase computational cost but also lower the accuracy in predicting further unseen instances. This has led to the necessity of developing pruning methods for the simplification of rules. In addition, classification rules are used further to make predictions after the completion of their generation. As efficiency is concerned, it is expected to find the first rule that fires as soon as possible by searching through a rule set. Thus a suit-able structure is required to represent the rule set effectively. In this chapter, the authors introduce a unified framework for construction of rule based classification systems consisting of three operations on Big Data: rule generation, rule simplification and rule representation. The authors also review some existing methods and techniques used for each of the three operations and highlight their limitations. They introduce some novel methods and techniques developed by them recently. These methods and techniques are also discussed in comparison to existing ones with respect to efficient processing of Big Data.
Resumo:
The and RT0 finite element schemes are among the most promising low order elements for use in unstructured mesh marine and lake models. They are both free of spurious elevation modes, have good dispersive properties and have a relatively low computational cost. In this paper, we derive both finite element schemes in the same unified framework and discuss their respective qualities in terms of conservation, consistency, propagation factor and convergence rate. We also highlight the impact that the local variables placement can have on the model solution. The main conclusion that we can draw is that the choice between elements is highly application dependent. We suggest that the element is better suited to purely hydrodynamical applications while the RT0 element might perform better for hydrological applications that require scalar transport calculations.
Resumo:
In this article, we use the no-response test idea, introduced in Luke and Potthast (2003) and Potthast (Preprint) and the inverse obstacle problem, to identify the interface of the discontinuity of the coefficient gamma of the equation del (.) gamma(x)del + c(x) with piecewise regular gamma and bounded function c(x). We use infinitely many Cauchy data as measurement and give a reconstructive method to localize the interface. We will base this multiwave version of the no-response test on two different proofs. The first one contains a pointwise estimate as used by the singular sources method. The second one is built on an energy (or an integral) estimate which is the basis of the probe method. As a conclusion of this, the probe and the singular sources methods are equivalent regarding their convergence and the no-response test can be seen as a unified framework for these methods. As a further contribution, we provide a formula to reconstruct the values of the jump of gamma(x), x is an element of partial derivative D at the boundary. A second consequence of this formula is that the blow-up rate of the indicator functions of the probe and singular sources methods at the interface is given by the order of the singularity of the fundamental solution.
Resumo:
We provide a unified framework for a range of linear transforms that can be used for the analysis of terahertz spectroscopic data, with particular emphasis on their application to the measurement of leaf water content. The use of linear transforms for filtering, regression, and classification is discussed. For illustration, a classification problem involving leaves at three stages of drought and a prediction problem involving simulated spectra are presented. Issues resulting from scaling the data set are discussed. Using Lagrange multipliers, we arrive at the transform that yields the maximum separation between the spectra and show that this optimal transform is equivalent to computing the Euclidean distance between the samples. The optimal linear transform is compared with the average for all the spectra as well as with the Karhunen–Loève transform to discriminate a wet leaf from a dry leaf. We show that taking several principal components into account is equivalent to defining new axes in which data are to be analyzed. The procedure shows that the coefficients of the Karhunen–Loève transform are well suited to the process of classification of spectra. This is in line with expectations, as these coefficients are built from the statistical properties of the data set analyzed.
Resumo:
A study or experiment can be described as sequential if its design includes one or more interim analyses at which it is possible to stop the study, having reached a definitive conclusion concerning the primary question of interest. The potential of the sequential study to terminate earlier than the equivalent fixed sample size study means that, typically, there are ethical and economic advantages to be gained from using a sequential design. These advantages have secured a place for the methodology in the conduct of many clinical trials of novel therapies. Recently, there has been increasing interest in pharmacogenetics: the study of how DNA variation in the human genome affects the safety and efficacy of drugs. The potential for using sequential methodology in pharmacogenetic studies is considered and the conduct of candidate gene association studies, family-based designs and genome-wide association studies within the sequential setting is explored. The objective is to provide a unified framework for the conduct of these types of studies as sequential designs and hence allow experimenters to consider using sequential methodology in their future pharmacogenetic studies.
Resumo:
In recent years, there has been a drive to save development costs and shorten time-to-market of new therapies. Research into novel trial designs to facilitate this goal has led to, amongst other approaches, the development of methodology for seamless phase II/III designs. Such designs allow treatment or dose selection at an interim analysis and comparative evaluation of efficacy with control, in the same study. Methods have gained much attention because of their potential advantages compared to conventional drug development programmes with separate trials for individual phases. In this article, we review the various approaches to seamless phase II/III designs based upon the group-sequential approach, the combination test approach and the adaptive Dunnett method. The objective of this article is to describe the approaches in a unified framework and highlight their similarities and differences to allow choice of an appropriate methodology by a trialist considering conducting such a trial.
Resumo:
This paper demonstrates that, in situations in which a cumulative externality exists, the basic nature and extent of resource misallocation may be substantially less than we imagine. This conclusion stems from deriving consistent conjectures in a unified framework in which congestion is present. Experiments support the conclusion that, when numbers of agents are small, when there is little heterogeneity among them, and when they have the opportunity to observe each other during repeated experiment, the market allocation may be efficient
Resumo:
A unified approach is proposed for sparse kernel data modelling that includes regression and classification as well as probability density function estimation. The orthogonal-least-squares forward selection method based on the leave-one-out test criteria is presented within this unified data-modelling framework to construct sparse kernel models that generalise well. Examples from regression, classification and density estimation applications are used to illustrate the effectiveness of this generic sparse kernel data modelling approach.
Resumo:
Accessing information, which is spread across multiple sources, in a structured and connected way, is a general problem for enterprises. A unified structure for knowledge representation is urgently needed to enable integration of heterogeneous information resources. Topic Maps seem to be a solution for this problem. The Topic Map technology enables connecting information, through concepts and relationships, and their occurrences across multiple systems. In this paper, we address this problem by describing a framework built on topic maps, to support the current need of knowledge management. New approaches for information integration, intelligent search and topic map exploration are introduced within this framework.
Resumo:
A unified approach is proposed for data modelling that includes supervised regression and classification applications as well as unsupervised probability density function estimation. The orthogonal-least-squares regression based on the leave-one-out test criteria is formulated within this unified data-modelling framework to construct sparse kernel models that generalise well. Examples from regression, classification and density estimation applications are used to illustrate the effectiveness of this generic data-modelling approach for constructing parsimonious kernel models with excellent generalisation capability. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
As the building industry proceeds in the direction of low impact buildings, research attention is being drawn towards the reduction of carbon dioxide emission and waste. Starting from design and construction to operation and demolition, various building materials are used throughout the whole building lifecycle involving significant energy consumption and waste generation. Building Information Modelling (BIM) is emerging as a tool that can support holistic design-decision making for reducing embodied carbon and waste production in the building lifecycle. This study aims to establish a framework for assessing embodied carbon and waste underpinned by BIM technology. On the basis of current research review, the framework is considered to include functional modules for embodied carbon computation. There are a module for waste estimation, a knowledge-base of construction and demolition methods, a repository of building components information, and an inventory of construction materials’ energy and carbon. Through both static 3D model visualisation and dynamic modelling supported by the framework, embodied energy (carbon), waste and associated costs can be analysed in the boundary of cradle-to-gate, construction, operation, and demolition. The proposed holistic modelling framework provides a possibility to analyse embodied carbon and waste from different building lifecycle perspectives including associated costs. It brings together existing segmented embodied carbon and waste estimation into a unified model, so that interactions between various parameters through the different building lifecycle phases can be better understood. Thus, it can improve design-decision support for optimal low impact building development. The applicability of this framework is anticipated being developed and tested on industrial projects in the near future.
Resumo:
We describe the HadGEM2 family of climate configurations of the Met Office Unified Model, MetUM. The concept of a model "family" comprises a range of specific model configurations incorporating different levels of complexity but with a common physical framework. The HadGEM2 family of configurations includes atmosphere and ocean components, with and without a vertical extension to include a well-resolved stratosphere, and an Earth-System (ES) component which includes dynamic vegetation, ocean biology and atmospheric chemistry. The HadGEM2 physical model includes improvements designed to address specific systematic errors encountered in the previous climate configuration, HadGEM1, namely Northern Hemisphere continental temperature biases and tropical sea surface temperature biases and poor variability. Targeting these biases was crucial in order that the ES configuration could represent important biogeochemical climate feedbacks. Detailed descriptions and evaluations of particular HadGEM2 family members are included in a number of other publications, and the discussion here is limited to a summary of the overall performance using a set of model metrics which compare the way in which the various configurations simulate present-day climate and its variability.