5 resultados para underwater locomotion
em CentAUR: Central Archive University of Reading - UK
Resumo:
To steer a course through the world, people are almost entirely dependent on visual information, of which a key component is optic flow. In many models of locomotion, heading is described as the fundamental control variable; however, it has also been shown that fixating points along or near one's future path could be the basis of an efficient control solution. Here, the authors aim to establish how well observers can pinpoint instantaneous heading and path, by measuring their accuracy when looking at these features while traveling along straight and curved paths. The results showed that observers could identify both heading and path accurately (similar to 3 degrees) when traveling along straight paths, but on curved paths they were more accurate at identifying a point on their future path (similar to 5 degrees) than indicating their instantaneous heading (similar to 13 degrees). Furthermore, whereas participants could track changes in the tightness of their path, they were unable to accurately track the rate of change of heading. In light of these results, the authors suggest it is unlikely that heading is primarily used by the visual system to support active steering.
Resumo:
During locomotion, retinal flow, gaze angle, and vestibular information can contribute to one's perception of self-motion. Their respective roles were investigated during active steering: Retinal flow and gaze angle were biased by altering the visual information during computer-simulated locomotion, and vestibular information was controlled through use of a motorized chair that rotated the participant around his or her vertical axis. Chair rotation was made appropriate for the steering response of the participant or made inappropriate by rotating a proportion of the veridical amount. Large steering errors resulted from selective manipulation of retinal flow and gaze angle, and the pattern of errors provided strong evidence for an additive model of combination. Vestibular information had little or no effect on steering performance, suggesting that vestibular signals are not integrated with visual information for the control of steering at these speeds.
Resumo:
Eye-movements have long been considered a problem when trying to understand the visual control of locomotion. They transform the retinal image from a simple expanding pattern of moving texture elements (pure optic flow), into a complex combination of translation and rotation components (retinal flow). In this article we investigate whether there are measurable advantages to having an active free gaze, over a static gaze or tracking gaze, when steering along a winding path. We also examine patterns of free gaze behavior to determine preferred gaze strategies during active locomotion. Participants were asked to steer along a computer-simulated textured roadway with free gaze, fixed gaze, or gaze tracking the center of the roadway. Deviation of position from the center of the road was recorded along with their point of gaze. It was found that visually tracking the middle of the road produced smaller steering errors than for fixed gaze. Participants performed best at the steering task when allowed to sample naturally from the road ahead with free gaze. There was some variation in the gaze strategies used, but sampling was predominantly of areas proximal to the center of the road. These results diverge from traditional models of flow analysis.
Resumo:
This note investigates the motion control of an autonomous underwater vehicle (AUV). The AUV is modeled as a nonholonomic system as any lateral motion of a conventional, slender AUV is quickly damped out. The problem is formulated as an optimal kinematic control problem on the Euclidean Group of Motions SE(3), where the cost function to be minimized is equal to the integral of a quadratic function of the velocity components. An application of the Maximum Principle to this optimal control problem yields the appropriate Hamiltonian and the corresponding vector fields give the necessary conditions for optimality. For a special case of the cost function, the necessary conditions for optimality can be characterized more easily and we proceed to investigate its solutions. Finally, it is shown that a particular set of optimal motions trace helical paths. Throughout this note we highlight a particular case where the quadratic cost function is weighted in such a way that it equates to the Lagrangian (kinetic energy) of the AUV. For this case, the regular extremal curves are constrained to equate to the AUV's components of momentum and the resulting vector fields are the d'Alembert-Lagrange equations in Hamiltonian form.
Resumo:
Locomoting through the environment typically involves anticipating impending changes in heading trajectory in addition to maintaining the current direction of travel. We explored the neural systems involved in the “far road” and “near road” mechanisms proposed by Land and Horwood (1995) using simulated forward or backward travel where participants were required to gauge their current direction of travel (rather than directly control it). During forward egomotion, the distant road edges provided future path information, which participants used to improve their heading judgments. During backward egomotion, the road edges did not enhance performance because they no longer provided prospective information. This behavioral dissociation was reflected at the neural level, where only simulated forward travel increased activation in a region of the superior parietal lobe and the medial intraparietal sulcus. Providing only near road information during a forward heading judgment task resulted in activation in the motion complex. We propose a complementary role for the posterior parietal cortex and motion complex in detecting future path information and maintaining current lane positioning, respectively. (PsycINFO Database Record (c) 2010 APA, all rights reserved)