8 resultados para ultrastructural
em CentAUR: Central Archive University of Reading - UK
Resumo:
Maize (Zea mays L.) seedlings of two cultivars (cv. Bastion adapted to W. Europe, and cv. Batan 8686 adapted to the highlands of Mexico), raised in a glasshouse (19-25 degrees C), were transferred to 4.5 or 9 degrees C at photon flux density (PPFD) of 950 mu mol m(-2) s(-1) with 10-h photoperiod for 58 h and then allowed to recover at 22 degrees C for 16 h (14 h dark and 2 h at PPFD of 180 mu mol m(-2) s(-1)). The ultrastructural responses after 4 h or 26 h at 4.5 degrees C were the disappearance of starch grains in the bundle sheath chloroplasts and the contraction of intrathylakoid spaces in stromal thylakoids of the mesophyll chloroplasts. At this time, bundle sheath chloroplasts of cv. Batan 8686 formed peripheral reticulum. Prolonged stress at 4.5 degrees C (50 h) caused plastid swelling and the dilation of intrathylakoid spaces, mainly in mesophyll chloroplasts. Bundle sheath chloroplasts of cv. Batan 8686 seedlings appeared well preserved in shape and structure. Batan 8686 had also higher net photosynthetic rates during chilling and recovery than Bastion. Extended leaf photobleaching developed during the recovery period after chilling at 4.5 degrees C. This was associated with collapsed chloroplast envelopes, disintegrated chloroplasts and very poor staining.
Resumo:
Ultrastructural features of embryogenic pollen in Datura innoxia are described, just prior to, during, and after completion of the first division of the presumptive vegetative cell. In anther cultures initiated towards the end of the microspore phase and incubated at 28 degrees C in darkness, the spores divide within 24 h and show features consistent with those of dividing spores in vivo. Cytokinesis is also normal in most of the spores and the gametophytic cell-plate curves round the presumptive generative nucleus in the usual highly ordered way. Further differentiation of the 2 gametophytic cells does not take place and the pollen either switches to embryogenesis or degenerates. After 48-72 h, the remaining viable pollen shows the vegetative cell in division. The cell, which has a large vacuole and thin layer of parietal cytoplasm carried over from the microspore, divides consistently in a plane parallel to the microspore division. The dividing wall follows a less-ordered course than the gametophytic wall and usually traverses the vacuole, small portions of which are incorporated into the daughter cell adjacent to the generative cell. The only structural changes in the vegetative cell associated with the change in programme appear to be an increase in electron density of both plastids and mitochondria and deposition of an electron-dense material (possibly lipid) on the tonoplast. The generative cell is attached to the intine when the vegetative cell divides. Ribosomal density increases in the generative cell and exceeds that in the vegetative cell. A thin electron-dense layer also appears in the generative-cell wall. It is concluded that embryogenesis commences as soon as the 2 gametophytic cells are laid down. Gene activity associated with postmitotic synthesis of RNA and protein in the vegetative cell is switched off. The data are discussed in relation to the first division of the embryogenic vegetative cells in Nicotiana tabacum.
Resumo:
Myxozoans belonging to the recently described class Malacosporea parasitize freshwater bryozoans during at least part of their life cycle. There are at present only two species described in this class: Buddenbrockia plumatellae and Tetracapsuloides bryosalmonae. The former can exist as vermiform and sac-like stages in bryozoan hosts. The latter, in addition to forming sac-like stages in bryozoans, is the causative agent of salmonid proliferative kidney disease (PKD). We undertook molecular and ultrastructural investigations of new malacosporean material to further resolve malacosporean diversity and systematics. Phylogenetic analyses of 18S rDNA sequences provided evidence for two new putative species belonging to the genus Buddenbrockia, revealing a two-fold increase in the diversity of malacosporeans known to date. One new malacosporean is a vermiform parasite infecting the bryozoan Fredericella sultana and the other occurs as sac-like stages in the rare bryozoan, Lophopus crystallinus. Both bryozoans represent new hosts for the genus Buddenbrockia. Our results have established that the malacosporean which infected F. sultana was not a vermiform stage of T. bryosalmonae, although it was collected from a site endemic for PKD. Ultrastructural investigation of new material of B. plumatellae revealed the presence of numerous external tubes associated with developing polar capsules, confirming that the absence of external tubes should no longer be considered as a character of the class Malacosporea.
Resumo:
Senescence of plant organs is a genetically controlled process that regulates cell death to facilitate nutrient recovery and recycling, and frequently precedes, or is concomitant with, ripening of reproductive structures. In Arabidopsis thaliana, the seeds are contained within a silique, which is itself a photosynthetic organ in the early stages of development and undergoes a programme of senescence prior to dehiscence. A transcriptional analysis of the silique wall was undertaken to identify changes in gene expression during senescence and to correlate these events with ultrastructural changes. The study revealed that the most highly up-regulated genes in senescing silique wall tissues encoded seed storage proteins, and the significance of this finding is discussed. Global transcription profiles of senescing siliques were compared with those from senescing Arabidopsis leaf or petal tissues using microarray datasets and metabolic pathway analysis software (MapMan). In all three tissues, members of NAC and WRKY transcription factor families were up-regulated, but components of the shikimate and cell-wall biosynthetic pathways were down-regulated during senescence. Expression of genes encoding ethylene biosynthesis and action showed more similarity between senescing siliques and petals than between senescing siliques and leaves. Genes involved in autophagy were highly expressed in the late stages of death of all plant tissues studied, but not always during the preceding remobilization phase of senescence. Analyses showed that, during senescence, silique wall tissues exhibited more transcriptional features in common with petals than with leaves. The shared and distinct regulatory events associated with senescence in the three organs are evaluated and discussed.
Resumo:
Baby leaf salads are gaining in popularity over traditional whole head lettuce salads in response to consumer demand for greater variety and convenience in their diet. Baby lettuce leaves are mixed, washed and packaged as whole leaves, with a shelf-life of approximately 10 days post-processing. End of shelf-life, as determined by the consumer, is typified by bruising, water-logging and blackening of the leaves, but the biological events causing this phenotype have not been studied to date. We investigated the physiological and ultrastructural characteristics during postharvest shelf-life of two lettuce varieties with very different leaf morphologies. Membrane disruption was an important determinant of cell death in both varieties. although the timing and characteristics of breakdown was different in each with Lollo rossa showing signs of aging such as thylakoid disruption and plastoglobuli accumulation earlier than Cos. Membranes in Lollo rossa showed a later, but more distinct increase in permeability than in Cos. as indicated by electrolyte leakage and the presence of cytoplasmic fragments in the vacuole, but Cos membranes show distinct fractures towards the end of shelf-life. The tissue lost less than 25% fresh weight during shelf-life and there was little protein loss compared to developmentally aging leaves in an ambient environment. Biophysical measurements showed that breakstrength was significantly reduced in Lollo rossa, whereas irreversible leaf plasticity was significantly reduced in Cos leaves. The reversible elastic properties of both varieties changed throughout shelf-life. We compared the characteristics of shelf-life in both varieties of bagged lettuce leaves with other leafy salad crops and discuss the potential targets for future work to improve postharvest quality of baby leaf lettuce. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Enterohaemorrhagic Escherichia coli O157 : H7 is a bacterial pathogen that can cause haemorrhagic colitis and haemolytic uremic syndrome. In the primary reservoir host, cattle, the terminal rectum is the principal site of E. coli O157 colonization. In this study, bovine terminal rectal primary epithelial cells were used to examine the role of H7 flagella in epithelial adherence. Binding of a fliC(H7) mutant O157 strain to rectal epithelium was significantly reduced as was binding of the flagellated wild-type strain following incubation with H7-specific antibodies. Complementation of fliC(H7) mutant O157 strain with fliC(H7) restored the adherence to wild-type levels; however, complementation with fliC(H6) did not restore it. High-resolution ultrastructural and imunofluorescence studies demonstrated the presence of abundant flagella forming physical contact points with the rectal epithelium. Binding to terminal rectal epithelium was specific to H7 by comparison with other flagellin types tested. In-cell Western assays confirmed temporal expression of flagella during O157 interaction with epithelium, early expression was suppressed during the later stages of microcolony and attaching and effacing lesion formation. H7 flagella are expressed in vivo by individual bacteria in contact with rectal mucosa. Our data demonstrate that the H7 flagellum acts as an adhesin to bovine intestinal epithelium and its involvement in this crucial initiating step for colonization indicates that H7 flagella could be an important target in intervention strategies.