12 resultados para ultrasonic bath

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laboratory measurements of the attenuation and velocity dispersion of compressional and shear waves at appropriate frequencies, pressures, and temperatures can aid interpretation of seismic and well-log surveys as well as indicate absorption mechanisms in rocks. Construction and calibration of resonant-bar equipment was used to measure velocities and attenuations of standing shear and extensional waves in copper-jacketed right cylinders of rocks (30 cm in length, 2.54 cm in diameter) in the sonic frequency range and at differential pressures up to 65 MPa. We also measured ultrasonic velocities and attenuations of compressional and shear waves in 50-mm-diameter samples of the rocks at identical pressures. Extensional-mode velocities determined from the resonant bar are systematically too low, yielding unreliable Poisson's ratios. Poisson's ratios determined from the ultrasonic data are frequency corrected and used to calculate the sonic-frequency compressional-wave velocities and attenuations from the shear- and extensional-mode data. We calculate the bulk-modulus loss. The accuracies of attenuation data (expressed as 1000/Q, where Q is the quality factor) are +/- 1 for compressional and shear waves at ultrasonic frequency, +/- 1 for shear waves, and +/- 3 for compressional waves at sonic frequency. Example sonic-frequency data show that the energy absorption in a limestone is small (Q(P) greater than 200 and stress independent) and is primarily due to poroelasticity, whereas that in the two sandstones is variable in magnitude (Q(P) ranges from less than 50 to greater than 300, at reservoir pressures) and arises from a combination of poroelasticity and viscoelasticity. A graph of compressional-wave attenuation versus compressional-wave velocity at reservoir pressures differentiates high-permeability (> 100 mD, 9.87 X 10(-14) m(2)) brine-saturated sandstones from low-permeability (< 100 mD, 9.87 X 10 (14) m(2)) sandstones and shales.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss a novel approach that would lead to the development of an ultrasonic optical force-feedback measurement microphone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly efficient process for oxidative degradation of 1,3-dialkylimidazolium ionic liquids in hydrogen peroxide/acetic acid aqueous medium assisted by ultrasonic chemical irradiation is, for the first time, described. It is shown that more than 93% of the 1,3-dialkylimidazolium cation with the corresponding Cl-, Br-, BF4- and PF6- counter-anions at a concentration of 2.5 mM can be degraded at 50 degrees C within 12 h while at 72 h the conversions approach 99%. A tentative mechanism for the degradation of these ILs is for the first time proposed through a detailed kinetic analysis of several characteristic transients and/or immediate products, which are identified during the ILs degradation using GC-MS. The results clearly indicate that three hydrogen atoms in the imidazolium ring are the first sites preferably oxidized, followed by cleavage of the alkyl groups attached to the N atoms from the ring. The nature of the alkyl chain length on the imidazolium ring and the type of counter anion do not seem to affect the degradation process. Further, selective fragmentations of C-N bonds of the imidazolium or derived ring lead to ring opening, forming degraded intermediates. It is also shown that acetoxyacetic acid and biurea are the final kinetically stable degraded products from the ILs under the degradation conditions.

Relevância:

20.00% 20.00%

Publicador: