2 resultados para tyrosinase activity
em CentAUR: Central Archive University of Reading - UK
Resumo:
The antioxidant and tyrosinase inhibitory properties of extracts of mango seed kernel (Mangifera indica L.), which is normally discarded when the fruit is processed, were studied. Extracts contained phenolic components by a high antioxidant activity, which was assessed in homogeneous solution by the 2,2-diphenyt-1-picrylhydrazyl radical and 2,2'-azinobis (3-ethylbenzothialozinesulfonic acid) radical cation-scavenging assays and in an emulsion with the ferric thiocyanate test. The extracts also possessed tyrosinase inhibitory activity. Drying conditions and extraction solvent were varied, and optimum conditions for preparation of mango seed kernel extract were found to be sun-drying with ethanol extraction at room temperature. Refluxing in acidified ethanol gave an increase in yield and the obtained extract had the highest content of total phenolics, and also was the most effective antioxidant with the highest radical-scavenging, metal-chelating and tyrosinase inhibitory activity. The extracts did not cause acute irritation of rabbit skins. Our study for the first time reveals the high total phenol content, radical-scavenging, metal-chelating and tyrosinase inhibitory activities of the extract from mango seed kernel. This extract may be suitable for use in food, cosmetic, nutraceutical and pharmaceutical applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Metastatic malignant melanoma remains a highly aggressive form of skin cancer for which no reliable methods for treatment exist. Given the increasing incidence of this cancer, considerable attention has focused on the development of new and improved methods for tackling this disease. Within this article, methods for treating melanoma are reviewed and discussed with particular attention focusing on prodrugs that are activated by the tyrosinase enzyme. This enzyme is up-regulated and is of elevated activity within malignant melanomas compared with healthy melanocytes, providing an ideal in-situ tool for the activation of melanoma prodrugs. By way of background to the prodrug strategies discussed within this review, the causes of melanoma, the enzymology of tyrosinase, and the chemistry of the biosynthetic pathways associated with melanogenesis are presented. Aspects of the design, mode of action, and biological profiles of key prodrugs that are activated by tyrosinase, and that show potential for the treatment of melanoma, are then presented and compared.