6 resultados para tyrosinase
em CentAUR: Central Archive University of Reading - UK
Resumo:
Metastatic malignant melanoma remains a highly aggressive form of skin cancer for which no reliable methods for treatment exist. Given the increasing incidence of this cancer, considerable attention has focused on the development of new and improved methods for tackling this disease. Within this article, methods for treating melanoma are reviewed and discussed with particular attention focusing on prodrugs that are activated by the tyrosinase enzyme. This enzyme is up-regulated and is of elevated activity within malignant melanomas compared with healthy melanocytes, providing an ideal in-situ tool for the activation of melanoma prodrugs. By way of background to the prodrug strategies discussed within this review, the causes of melanoma, the enzymology of tyrosinase, and the chemistry of the biosynthetic pathways associated with melanogenesis are presented. Aspects of the design, mode of action, and biological profiles of key prodrugs that are activated by tyrosinase, and that show potential for the treatment of melanoma, are then presented and compared.
Resumo:
The development of two novel protecting groups for amines is described. Thus, a range of amines have been converted to ureas, and the deprotection of these upon exposure to mushroom tyrosinase (E.C. 1.14.18.1) has been demonstrated.
Resumo:
The antioxidant and tyrosinase inhibitory properties of extracts of mango seed kernel (Mangifera indica L.), which is normally discarded when the fruit is processed, were studied. Extracts contained phenolic components by a high antioxidant activity, which was assessed in homogeneous solution by the 2,2-diphenyt-1-picrylhydrazyl radical and 2,2'-azinobis (3-ethylbenzothialozinesulfonic acid) radical cation-scavenging assays and in an emulsion with the ferric thiocyanate test. The extracts also possessed tyrosinase inhibitory activity. Drying conditions and extraction solvent were varied, and optimum conditions for preparation of mango seed kernel extract were found to be sun-drying with ethanol extraction at room temperature. Refluxing in acidified ethanol gave an increase in yield and the obtained extract had the highest content of total phenolics, and also was the most effective antioxidant with the highest radical-scavenging, metal-chelating and tyrosinase inhibitory activity. The extracts did not cause acute irritation of rabbit skins. Our study for the first time reveals the high total phenol content, radical-scavenging, metal-chelating and tyrosinase inhibitory activities of the extract from mango seed kernel. This extract may be suitable for use in food, cosmetic, nutraceutical and pharmaceutical applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Boron-containing complexes that have the potential to irreversibly accumulate in melanoma cells have been prepared by reaction of amino acids with 9-methoxy-9-borabicyclo[3.3.1]nonane. The ability of each complex to act as a substrate for tyrosinase has been probed by oximetry. Increased uptake of the lead candidate in a tyrosinase-rich cell line, compared with a tyrosinase-absent cell line, is reported, with results correlating well with that for a drug currently approved for BNCT.
Resumo:
The death of nigral neurons in Parkinson's disease is thought to involve the formation of the endogenous neurotoxin, 5-S-cysteinyl-dopamine. In the present study, we show that the polyphenols, (+)-catechin and caffeic acid, which contain a catechol moiety, inhibit tyrosinase-induced formation of 5-S-eysteinyl-dopamine via their capacity to undergo tyro sina se-induced oxidation to yield cysteinyl-polyphenol adducts. In contrast, the inhibition afforded by the flavanone, hesperetin, was not accompanied by the formation of cysteinyl-hesperetin adducts, indicating that it may inhibit via direct interaction with tyrosinase. Whilst the stilbene resveratrol also inhibited 5-S-eysteinyl-dopamine formation, this was accompanied by the formation of dihydrobenzothiazine, a strong neurotoxin. Our data indicate that the inhibitory effects of polyphenols against 5-S-cysteinyl-dopamine formation are structure-dependent and shed further light on the mechanisms by which polyphenols exert protection against neuronal injury relevant to neurodegenerative diseases. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Two novel tyrosinase mediated drug delivery pathways have been investigated for the selective delivery of cytotoxic units to melanocytes from urea and thiourea prodrugs. The synthesis of these prodrugs is reported, as well as oximetry data that illustrate that the targets are substrates for tyrosinase. The stability of each of the prodrugs in (i) phosphate buffer and (ii) bovine serum is discussed, and the urea prodrugs are identified as lead candidates for further studies. Finally, HPLC studies and preliminary cytotoxicity studies in a melanotic and an amelanotic cell line, that illustrate the feasibility of the approach, are presented.