7 resultados para typing methods
em CentAUR: Central Archive University of Reading - UK
Resumo:
Salmonella enterica serotypes Derby, Mbandaka, Montevideo, Livingstone, and Senftenberg were among the 10 most prevalent serotypes isolated from farm animals in England and Wales in 1999. These serotypes are of potential zoonotic relevance; however, there is currently no "gold standard" fingerprinting method for them. A collection of isolates representing the former serotypes and serotype Gold Coast were analyzed using plasmid profiling, pulsed-field gel electrophoresis (PFGE), and ribotyping. The success of the molecular methods in identifying DNA polymorphisms was different for each serotype. Plasmid profiling was particularly useful for serotype Derby isolates, and it also provided a good level of discrimination for serotype Senftenberg. For most serotypes, we observed a number of nontypeable plasmid-free strains, which represents a limitation of this technique. Fingerprinting of genomic DNA by ribotyping and PFGE produced a significant variation in results, depending on the serotype of the strain. Both PstI/SphI ribotyping and XbaI-PFGE provided a similar degree of strain differentiation for serotype Derby and serotype Senftenberg, only marginally lower than that achieved by plasmid profiling. Ribotyping was less sensitive than PFGE when applied to serotype Mbandaka or serotype Montevideo. Serotype Gold Coast isolates were found to be nontypeable by XbaI-PFGE, and a significant proportion of them were found to be plasmid free. A similar situation applies to a number of serotype Livingstone isolates which were nontypeable by plasmid profiling and/or PFGE. In summary, the serotype of the isolates has a considerable influence in deciding the best typing strategy; a single method cannot be relied upon for discriminating between strains, and a combination of typing methods allows further discrimination.
Resumo:
The usefulness of motor subtypes of delirium is unclear due to inconsistency in sub-typing methods and a lack of validation with objective measures of activity. The activity of 40 patients was measured with 24 h accelerometry monitoring. Patients with Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV) delirium (n = 30) were allocated into hyperactive, hypoactive and mixed motor subtypes. Delirium subtypes differed in relation to overall amount of activity, including movement in both sagittal and transverse planes. Differences were greater in the daytime and during the early evening ‘sundowning’ period. Frequency of postural changes was the most discriminating measure examined. Clinical subtypes of delirium defined by observed motor behaviour on the ward differ in electronically measured activity levels.
Resumo:
Infections involving Salmonella enterica subsp. enterica serovars have serious animal and human health implications; causing gastroenteritis in humans and clinical symptoms, such as diarrhoea and abortion, in livestock. In this study an optical genetic mapping technique was used to screen 20 field isolate strains from four serovars implicated in disease outbreaks. The technique was able to distinguish between the serovars and the available sequenced strains and group them in agreement with similar data from microarrays and PFGE. The optical maps revealed variation in genome maps associated with antimicrobial resistance and prophage content in S. Typhimurium, and separated the S. Newport strains into two clear geographical lineages defined by the presence of prophage sequences. The technique was also able to detect novel insertions that may have had effects on the central metabolism of some strains. Overall optical mapping allowed a greater level of differentiation of genomic content and spatial information than more traditional typing methods.
Resumo:
Reliable and sufficiently discriminative methods are needed for differentiating individual strains of Salmonella enterica serotype Enteritidis beyond the phenotypic level; however, a consensus has not been reached as to which molecular method is best suited for this purpose. In addition, data are lacking on the molecular fingerprinting of serotype Enteritidis from poultry environments in the United Kingdom. This study evaluated the combined use of classical methods (phage typing) with three well-established molecular methods (ribotyping, macrorestriction analysis of genomic DNA, and plasmid profiling) in the assessment of diversity within 104 isolates of serotype Enteritidis from eight unaffiliated poultry farms in England. The most sensitive technique for identifying polymorphism was PstI-SphII ribotyping, distinguishing a total of 22 patterns, 10 of which were found among phage type 4 isolates. Pulsed-field gel electrophoresis of XhaI-digested genomic DNA segregated the isolates into only six types with minor differences between them. In addition, 14 plasmid profiles were found among this population. When all of the typing methods were combined, 54 types of strains were differentiated, and most of the poultry farms presented a variety of strains, which suggests that serotype Enteritidis organisms representing different genomic groups are circulating in England. In conclusion, geographical and animal origins of Salmonella serotype Enteritidis isolates may have a considerable influence on selecting the best typing strategy for individual programs, and a single method cannot be relied on for discriminating between strains.
Resumo:
A LightCycler-based PCR-hybridization gyrA mutation assay (GAMA) was developed to rapidly detect gyrA point mutations in multiresistant (MR) Salmonella enterica serotype Typhimurium DT104 with decreased susceptibility to ciprofloxacin (MIC, 0.25 to 1.0 mg/liter). Ninety-two isolates (49 human, 43 animal) were tested with three individual oligonucleotide probes directed against an Asp-87-to-Asn (GAC --> AAC) mutation, an Asp-87-to-Gly (GAC --> GGC) mutation, and a Ser-83-to-Phe (TCC --> TTC) mutation. Strains homologous to the probes could be distinguished from strains that had different mutations by their probe-target melting temperatures. Thirty-seven human and 30 animal isolates had an Asp-87-to-Asn substitution, 6 human and 6 animal isolates had a Ser-83-to-Phe substitution, and 5 human and 2 animal isolates had an Asp-87-to-Gly substitution. The remaining six strains all had mismatches with the three probes and therefore different gyrA mutations. The sequencing of gyrA from these six isolates showed that one human strain and two animal strains had an Asp-87-to-Tyr (GAC --> TAC) substitution and two animal strains had a Ser-83-to-Tyr (TCC --> TAC) substitution. One animal strain had no gyrA mutation, suggesting that this isolate had a different mechanism of resistance. Fifty-eight of the strains tested were indistinguishable by several different typing methods including antibiograms, pulsed-field gel gel electrophoresis, and plasmid profiling, although they could be further subdivided according to gyrA mutation. This study confirmed that MR DT104 with decreased susceptibility to ciprofloxacin from humans and food animals in England and Wales may have arisen independently against a background of clonal spread of MR DT104.
Resumo:
The Escherichia coli O26 serogroup includes important food-borne pathogens associated with human and animal diarrheal disease. Current typing methods have revealed great genetic heterogeneity within the O26 group; the data are often inconsistent and focus only on verotoxin (VT)-positive O26 isolates. To improve current understanding of diversity within this serogroup, the genomic relatedness of VT-positive and -negative O26 strains was assessed by comparative genomic indexing. Our results clearly demonstrate that irrespective of virulence characteristics and pathotype designation, the O26 strains show greater genomic similarity to each other than to any other strain included in this study. Our data suggest that enteropathogenic and VT-expressing E. coli O26 strains represent the same clonal lineage and that W-expressing E. coli O26 strains have gained additional virulence characteristics. Using this approach, we established the core genes which are central to the E. coli species and identified regions of variation from the E. coli K-12 chromosomal backbone.
Resumo:
Two genetic fingerprinting techniques, pulsed-field gel electrophoresis (PFGE) and ribotyping, were used to characterize 207 Escherichia coli O157 isolates from food animals, foods of animal origin, and cases of human disease (206 of the isolates were from the United Kingdom). In addition, 164 of these isolates were also phage typed. The isolates were divided into two general groups: (i) unrelated isolates not known to be epidemiologically linked (n = 154) and originating from food animals, foods and the environment, or humans and (ii) epidemiologically related isolates (n = 53) comprised of four related groups (RGs) originating either from one farm plus the abattoir where cattle from that farm were slaughtered or from one of three different English abattoirs. PFGE was conducted with the restriction endonuclease XbaI. while for ribotyping, two restriction endonucleases (PstI and SphI) were combined to digest genomic DNAs simultaneously. The 207 E. coli O157 isolates produced 97 PFGE profiles and 51 ribotypes. The two genetic fingerprinting methods had similar powers to discriminate the 154 epidemiologically unrelated E. coli O157 isolates in the study (Simpson's index of diversity [D] = 0.98 and 0.94 for PFGE typing and ribotyping, respectively). There was no correlation between the source of an isolate (healthy meat or milk animals, retail meats, or cases of human infection) and either particular PFGE or ribotype profiles or clusters. Combination of the results of both genetic fingerprinting methods produced 146 types, significantly more than when either of the two methods was used individually. Consequently, the superior discriminatory performance of the PFGE-ribotyping combination was proven in two ways: (i) by demonstrating that the majority of the E. coli O157 isolates with unrelated histories were indeed distinguishable types and (ii) by identifying some clonal groups among two of the four RGs of E. coli O157 isolates (comprising PFGE types different by just one or two bands), the relatedness of which would have remained unconfirmed otherwise.