161 resultados para tropics

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The humidity in the dry regions of the tropical and subtropical troposphere has a major impact on the ability of the atmosphere to radiate heat to space. The water vapour content in these regions is determined by their ``origins'', here defined as the last condensation event following air masses. Trajectory simulations are used to investigate such origins using ERA40 data for January 1993. It is shown that 96% of air parcels experience condensation within 24 days and most of the remaining 4% originate in the stratosphere. Dry air masses are shown to experience a net pressure increase since last condensation which is uniform with latitude, while the median time taken for descent is 5 days into the subtropics but exceeds 16 days into the equatorial lower troposphere. The associated rate of decrease in potential temperature is consistent with radiative cooling. The relationship between the drier regions in the tropics and subtropics and the geographical localization of their origin is investigated. Four transport processes are identified to explain these relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many modelling studies examine the impacts of climate change on crop yield, but few explore either the underlying bio-physical processes, or the uncertainty inherent in the parameterisation of crop growth and development. We used a perturbed-parameter crop modelling method together with a regional climate model (PRECIS) driven by the 2071-2100 SRES A2 emissions scenario in order to examine processes and uncertainties in yield simulation. Crop simulations used the groundnut (i.e. peanut; Arachis hypogaea L.) version of the General Large-Area Model for annual crops (GLAM). Two sets of GLAM simulations were carried out: control simulations and fixed-duration simulations, where the impact of mean temperature on crop development rate was removed. Model results were compared to sensitivity tests using two other crop models of differing levels of complexity: CROPGRO, and the groundnut model of Hammer et al. [Hammer, G.L., Sinclair, T.R., Boote, K.J., Wright, G.C., Meinke, H., and Bell, M.J., 1995, A peanut simulation model: I. Model development and testing. Agron. J. 87, 1085-1093]. GLAM simulations were particularly sensitive to two processes. First, elevated vapour pressure deficit (VPD) consistently reduced yield. The same result was seen in some simulations using both other crop models. Second, GLAM crop duration was longer, and yield greater, when the optimal temperature for the rate of development was exceeded. Yield increases were also seen in one other crop model. Overall, the models differed in their response to super-optimal temperatures, and that difference increased with mean temperature; percentage changes in yield between current and future climates were as diverse as -50% and over +30% for the same input data. The first process has been observed in many crop experiments, whilst the second has not. Thus, we conclude that there is a need for: (i) more process-based modelling studies of the impact of VPD on assimilation, and (ii) more experimental studies at super-optimal temperatures. Using the GLAM results, central values and uncertainty ranges were projected for mean 2071-2100 crop yields in India. In the fixed-duration simulations, ensemble mean yields mostly rose by 10-30%. The full ensemble range was greater than this mean change (20-60% over most of India). In the control simulations, yield stimulation by elevated CO2 was more than offset by other processes-principally accelerated crop development rates at elevated, but sub-optimal, mean temperatures. Hence, the quantification of uncertainty can facilitate relatively robust indications of the likely sign of crop yield changes in future climates. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sensitivity of the UK Universities Global Atmospheric Modelling Programme (UGAMP) General Circulation Model (UGCM) to two very different approaches to convective parametrization is described. Comparison is made between a Kuo scheme, which is constrained by large-scale moisture convergence, and a convective-adjustment scheme, which relaxes to observed thermodynamic states. Results from 360-day integrations with perpetual January conditions are used to describe the model's tropical time-mean climate and its variability. Both convection schemes give reasonable simulations of the time-mean climate, but the representation of the main modes of tropical variability is markedly different. The Kuo scheme has much weaker variance, confined to synoptic frequencies near 4 days, and a poor simulation of intraseasonal variability. In contrast, the convective-adjustment scheme has much more transient activity at all time-scales. The various aspects of the two schemes which might explain this difference are discussed. The particular closure on moisture convergence used in this version of the Kuo scheme is identified as being inappropriate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution and variability of water vapor and its links with radiative cooling and latent heating via precipitation are crucial to understanding feedbacks and processes operating within the climate system. Column-integrated water vapor (CWV) and additional variables from the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA40) are utilized to quantify the spatial and temporal variability in tropical water vapor over the period 1979–2001. The moisture variability is partitioned between dynamical and thermodynamic influences and compared with variations in precipitation provided by the Climate Prediction Center Merged Analysis of Precipitation (CMAP) and the Global Precipitation Climatology Project (GPCP). The spatial distribution of CWV is strongly determined by thermodynamic constraints. Spatial variability in CWV is dominated by changes in the large-scale dynamics, in particular associated with the El Niño–Southern Oscillation (ENSO). Trends in CWV are also dominated by dynamics rather than thermodynamics over the period considered. However, increases in CWV associated with changes in temperature are significant over the equatorial east Pacific when analyzing interannual variability and over the north and northwest Pacific when analyzing trends. Significant positive trends in CWV tend to predominate over the oceans while negative trends in CWV are found over equatorial Africa and Brazil. Links between changes in CWV and vertical motion fields are identified over these regions and also the equatorial Atlantic. However, trends in precipitation are generally incoherent and show little association with the CWV trends. This may in part reflect the inadequacies of the precipitation data sets and reanalysis products when analyzing decadal variability. Though the dynamic component of CWV is a major factor in determining precipitation variability in the tropics, in some regions/seasons the thermodynamic component cancels its effect on precipitation variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conditions for soil development in the lowland tropics are described, in particular the soil-forming factors, climate, parent material, topography and organisms, and their interactions through time. Of particular importance is the climate of the lowland tropics, which has a major influence on the nature of soil development because of high temperatures and the duration of the periods when the soil is moist. The nature of the parent material is also a major determinant of the nature of the soil. Because soil development has taken place in much of the tropics over long time periods, the soils have distinctive characteristics. Soil-forming processes are described briefly, in particular the nature of the weathering of the inorganic fraction of the soil, and the removal of soluble materials in leaching and the translocation of materials in suspension. Typical soils developed in the humid and seasonally moist tropics are briefly described, and comparisons made between the two most widely used international soil classifications, Soil Taxonomy and World Reference Base for Soil Resources. Some of the other soils found within the tropics are briefly described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent radar and rain-gauge observations from the island of Dominica, which lies in the eastern Caribbean sea at 15 N, show a strong orographic enhancement of trade-wind precipitation. The mechanisms behind this enhancement are investigated using idealized large-eddy simulations with a realistic representation of the shallow trade-wind cumuli over the open ocean upstream of the island. The dominant mechanism is found to be the rapid growth of convection by the bulk lifting of the inhomogenous impinging flow. When rapidly lifted by the terrain, existing clouds and other moist parcels gain buoyancy relative to rising dry air because of their different adiabatic lapse rates. The resulting energetic, closely-packed convection forms precipitation readily and brings frequent heavy showers to the high terrain. Despite this strong precipitation enhancement, only a small fraction (1%) of the impinging moisture flux is lost over the island. However, an extensive rain shadow forms to the lee of Dominica due to the convective stabilization, forced descent, and wave breaking. A linear model is developed to explain the convective enhancement over the steep terrain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The “natural laboratory” of mountainous Dominica (15°N) in the trade wind belt is used to study the physics of tropical orographic precipitation in its purest form, unforced by weather disturbances or by the diurnal cycle of solar heating. A cross-island line of rain gauges and 5-min radar scans from Guadeloupe reveal a large annual precipitation at high elevation (7 m yr^{−1}) and a large orographic enhancement factor (2 to 8) caused primarily by repetitive convective triggering over the windward slope. The triggering is caused by terrain-forced lifting of the conditionally unstable trade wind cloud layer. Ambient humidity fluctuations associated with open-ocean convection may play a key role. The convection transports moisture upward and causes frequent brief showers on the hilltops. The drying ratio of the full air column from precipitation is less than 1% whereas the surface air dries by about 17% from the east coast to the mountain top. On the lee side, a plunging trade wind inversion and reduced instability destroys convective clouds and creates an oceanic rain shadow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land use change with accompanying major modifications to the vegetation cover is widespread in the tropics, due to increasing demands for agricultural land, and may have significant impacts on the climate. This study investigates (1) the influence of vegetation on the local climate in the tropics; (2) how that influence varies from region to region; and (3) how the sensitivity of the local climate to vegetation, and hence land use change, depends on the hydraulic characteristics of the soil. A series of idealised experiments with the Hadley Centre atmospheric model, HadAM3, are described in which the influence of vegetation in the tropics is assessed by comparing the results of integrations with and without tropical vegetation. The sensitivity of the results to the soil characteristics is then explored by repeating the experiments with a differing, but equally valid, description of soil hydraulic parameters. The results have shown that vegetation has a significant moderating effect on the climate throughout the tropics by cooling the surface through enhanced latent heat fluxes. The influence of vegetation is, however, seasonally dependent, with much greater impacts during the dry season when the availability of surface moisture is limited. Furthermore, there are significant regional variations both in terms of the magnitude of the cooling and in the response of the precipitation. Not all regions show a feedback of vegetation on the local precipitation; this result has been related both to vegetation type and to the prevailing meteorological conditions. An important finding has been the sensitivity of the results to the specification of the soil hydraulic parameters. The introduction of more freely draining soils has changed the soil-moisture contents of the control, vegetated system and has reduced, significantly, the climate sensitivity to vegetation and by implication, land use change. Changes to the soil parameters have also had an impact on the soil hydrology and its interaction with vegetation, by altering the partitioning between fast and slow runoff processes. These results raise important questions about the representation of highly heterogeneous soil characteristics in climate models, as well as the potential influence of land use change on the soil characteristics themselves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A global archive of high-resolution (3-hourly, 0.58 latitude–longitude grid) window (11–12 mm) brightness temperature (Tb) data from multiple satellites is being developed by the European Union Cloud Archive User Service (CLAUS) project. It has been used to construct a climatology of the diurnal cycle in convection, cloudiness, and surface temperature for all regions of the Tropics. An example of the application of the climatology to the evaluation of the climate version of the U.K. Met. Office Unified Model (UM), version HadAM3, is presented. The characteristics of the diurnal cycle described by the CLAUS data agree with previous observational studies, demonstrating the universality of the characteristics of the diurnal cycle for land versus ocean, clear sky versus convective regimes. It is shown that oceanic deep convection tends to reach its maximum in the early morning. Continental convection generally peaks in the evening, although there are interesting regional variations, indicative of the effects of complex land–sea and mountain–valley breezes, as well as the life cycle of mesoscale convective systems. A striking result from the analysis of the CLAUS data has been the extent to which the strong diurnal signal over land is spread out over the adjacent oceans, probably through gravity waves of varying depths. These coherent signals can be seen for several hundred kilometers and in some instances, such as over the Bay of Bengal, can lead to substantial diurnal variations in convection and precipitation. The example of the use of the CLAUS data in the evaluation of the Met. Office UM has demonstrated that the model has considerable difficulty in capturing the observed phase of the diurnal cycle in convection, which suggests some fundamental difficulties in the model’s physical parameterizations. Analysis of the diurnal cycle represents a powerful tool for identifying and correcting model deficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technique of relaxation of the tropical atmosphere towards an analysis in a month-season forecast model has previously been successfully exploited in a number of contexts. Here it is shown that when tropical relaxation is used to investigate the possible origin of the observed anomalies in June–July 2007, a simple dynamical model is able to reproduce the observed component of the pattern of anomalies given by an ensemble of ECMWF forecast runs. Following this result, the simple model is used for a range of experiments on time-scales of relaxation, variables and regions relaxed based on a control model run with equatorial heating in a zonal flow. A theory based on scale analysis for the large-scale tropics is used to interpret the results. Typical relationships between scales are determined from the basic equations, and for a specified diabatic heating a chain of deductions for determining the dependent variables is derived. Different critical time-scales are found for tropical relaxation of different dependent variables to be effective. Vorticity has the longest critical time-scale, typically 1.2 days. For temperature and divergence, the time-scales are 10 hours and 3 hours, respectively. However not all the tropical fields, in particular the vertical motion, are reproduced correctly by the model unless divergence is heavily damped. To obtain the correct extra-tropical fields, it is crucial to have the correct rotational flow in the subtropics to initiate the Rossby wave propagation from there. It is sufficient to relax vorticity or temperature on a time-scale comparable or less than their critical time-scales to obtain this. However if the divergent advection of vorticity is important in the Rossby Wave Source then strong relaxation of divergence is required to accurately represent the tropical forcing of Rossby waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of 18 coupled Chemistry Climate Models (CCMs) in the Tropical Tropopause Layer (TTL) is evaluated using qualitative and quantitative diagnostics. Trends in tropopause quantities in the tropics and the extratropical Upper Troposphere and Lower Stratosphere (UTLS) are analyzed. A quantitative grading methodology for evaluating CCMs is extended to include variability and used to develop four different grades for tropical tropopause temperature and pressure, water vapor and ozone. Four of the 18 models and the multi-model mean meet quantitative and qualitative standards for reproducing key processes in the TTL. Several diagnostics are performed on a subset of the models analyzing the Tropopause Inversion Layer (TIL), Lagrangian cold point and TTL transit time. Historical decreases in tropical tropopause pressure and decreases in water vapor are simulated, lending confidence to future projections. The models simulate continued decreases in tropopause pressure in the 21st century, along with ∼1K increases per century in cold point tropopause temperature and 0.5–1 ppmv per century increases in water vapor above the tropical tropopause. TTL water vapor increases below the cold point. In two models, these trends are associated with 35% increases in TTL cloud fraction. These changes indicate significant perturbations to TTL processes, specifically to deep convective heating and humidity transport. Ozone in the extratropical lowermost stratosphere has significant and hemispheric asymmetric trends. O3 is projected to increase by nearly 30% due to ozone recovery in the Southern Hemisphere (SH) and due to enhancements in the stratospheric circulation. These UTLS ozone trends may have significant effects in the TTL and the troposphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective cyclone tracking applied to a 30-yr reanalysis dataset shows that cyclone development in the summer and autumn seasons is active in the tropics and extratropics and inactive in the subtropics. To understand this geographically bimodal distribution of cyclone development associated with tropical and extratropical cyclones quantitatively, the direct relationship between cyclone types and their environments are assessed by using a parameter space of environmental variables [environmental parameter space (EPS)]. The number of cyclones is analyzed in terms of two different factors: the environmental conditions favorable for cyclone development and the area size that satisfies the favorable condition. The EPS analysis is mainly conducted for two representative environmental parameters that are commonly used for cyclone analysis: potential intensity for tropical cyclones and baroclinicity for extratropical cyclones. The geographically bimodal distribution is attributed to the high sensitivity of the cyclone development to the change in the environmental fields from tropics to extratropics. In addition, the bimodal distribution is partly attributed to the rapid change in the environmental fields from tropics to extratropics. The EPS analysis also shows that other environmental parameters, including relative humidity and vertical velocity, may enhance the contrast between the tropics (extratropics) and subtropics, whereas they are not essential for determining cyclone types. The relationship between cyclones and their environments is found to be similar between the hemispheres in the EPS, although the geographical distribution, particularly the longitudinal uniformity, is markedly different between the hemispheres.