30 resultados para transmission network synthesis
em CentAUR: Central Archive University of Reading - UK
Resumo:
The authors discuss an implementation of an object oriented (OO) fault simulator and its use within an adaptive fault diagnostic system. The simulator models the flow of faults around a power network, reporting switchgear indications and protection messages that would be expected in a real fault scenario. The simulator has been used to train an adaptive fault diagnostic system; results and implications are discussed.
Resumo:
The authors describe a learning classifier system (LCS) which employs genetic algorithms (GA) for adaptive online diagnosis of power transmission network faults. The system monitors switchgear indications produced by a transmission network, reporting fault diagnoses on any patterns indicative of faulted components. The system evaluates the accuracy of diagnoses via a fault simulator developed by National Grid Co. and adapts to reflect the current network topology by use of genetic algorithms.
Resumo:
The National Grid Company plc. owns and operates the electricity transmission network in England and Wales, the day to day running of the network being carried out by teams of engineers within the national control room. The task of monitoring and operating the transmission network involves the transfer of large amounts of data and a high degree of cooperation between these engineers. The purpose of the research detailed in this paper is to investigate the use of interfacing techniques within the control room scenario, in particular, the development of an agent based architecture for the support of cooperative tasks. The proposed architecture revolves around the use of interface and user supervisor agents. Primarily, these agents are responsible for the flow of information to and from individual users and user groups. The agents are also responsible for tackling the synchronisation and control issues arising during the completion of cooperative tasks. In this paper a novel approach to human computer interaction (HCI) for power systems incorporating an embedded agent infrastructure is presented. The agent architectures used to form the base of the cooperative task support system are discussed, as is the nature of the support system and tasks it is intended to support.
Resumo:
oxovanadium(V) salicylhydroximate complexes, [VO(SHA)(H2O)]center dot 1.58H(2)O (1) and [V3O3(CSHA)(3) (H2O)(3)]center dot 3CH(3)COCH(3) (2) have been synthesized by reaction of VO43- with N-salicyl hydroxamic acid (SHAHS) and N-(5-chlorosalicyl) hydroxamic acid (CSHAH(3)), respectively, in methanol medium. Compound 1 on reaction with pyridine 2,6-dicarboxylic acid (PyDCH2) yields mononuclear complex [VO(SHAH(2))(PyDC)] (3). Treatment of compound 3 with hydrogen peroxide at low pH (2-3) and low temperature (0-5 degrees C) yields a stable oxoperoxovanadium(V) complex H[VO(O-2)(PyDC)(H2O)]center dot 2.5H(2)O (4). All four complexes (1-4) have been characterized by spectroscopic (IR, UV-Vis, V-51 NMR) and single crystal X-ray analyses. Intermolecular hydrogen bonds link complex 1 into hexanuclear clusters consisting of six {VNO5} octahedra surrounded by twelve {VNO5} octahedra to form an annular ring. While the molecular packing in 2 generates a two-dimensional framework hydrogen bonds involving the solvent acetone molecules, the mononuclear complexes 3 and 4 exhibit three-dimensional supramolecular architecture. The compounds 1 and 2 behave as good catalysts for oxygenation of benzylic, aromatic, carbocyclic and aliphatic hydrocarbons to their corresponding hydroxylated and oxygenated products using H2O2 as terminal oxidant; the process affords very good yield and turnover number. The catalysis work shows that cyclohexane is a very easily oxidizable substrate giving the highest turnover number (TON) while n-hexane and n-heptane show limited yield, longer time involvement and lesser TON than other hydrocarbons. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Three new polynuclear copper(II) complexes of 2-picolinic acid (Hpic), {[Cu-2(pic)(3)(H2O)]ClO4}(n) (1), {[Cu-2(pic)(3)(H2O)]BF4}(n) (2), and [Cu-2(pic)3(H2O)(2)(NO3)](n) (3), have been synthesized by reaction of the "metalloligand" [Cu-(pic)(2)] with the corresponding copper(II) salts. The compounds are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements. Compounds 1 and 2 are isomorphous and crystallize in the triclinic system with space group P (1) over bar, while 3 crystallizes in the monoclinic system with space group P2(1)/n. The structural analyses reveal that complexes 1 and 2 are constructed by "fish backbone" chains through syn-anti (equatorial-equatorial) carboxylate bridges, which are linked to one another by syn-anti (equatorial-axial) carboxylate bridges, giving rise to a rectangular grid-like two-dimensional net. Complex 3 is formed by alternating chains of syn-anti carboxylate-bridged copper(II) atoms, which are linked together by strong H bonds involving coordinated nitrate ions and water molecules and uncoordinated oxygen atoms from carboxylate groups. The different coordination ability of the anions along with their involvement in the H-bonding network seems to be responsible for the difference in the final polymeric structures. Variable-temperature (2-300 K) magnetic susceptibility measurement shows the presence of weak ferromagnetic coupling for all three complexes that have been fitted with a fish backbone model developed for 1 and 2 (J = 1.74 and 0.99 cm(-1); J' = 0.19 and 0.25 cm(-1), respectively) and an alternating chain model for 3 (J = 1.19 cm(-1) and J' = 1.19 cm(-1)).
Resumo:
A new layered ammonium manganese(II) diphosphate, (NH4)(2)[Mn-3(P2O7)(2)(H2O)(2)], has been synthesised under solvothermal conditions at 433 K in ethylene glycol and the structure determined at 293 K using single-crystal X-ray diffraction data (M-r = 584.82, monoclinic, space group P2(1)/a, a = 9.4610( 8), b = 8.3565( 7), c = 9.477(1) Angstrom, beta = 99.908(9) degrees, V = 738.07 Angstrom(3), Z = 2, R = 0.0351 and R-w = 0.0411 for 1262 observed data (I > 3(sigma(I))). The structure consists of chains of cis- and trans-edge sharing MnO6 octahedra linked via P2O7 units to form layers of formula [Mn3P4O14(H2O)(2)](2-) in the ab plane. Ammonium ions lie between the manganese-diphosphate layers. A network of interlayer and ammonium-layer based hydrogen bonding holds the structure together. Magnetic measurements indicate Curie - Weiss behaviour above 30 K with mu(eff) = 5.74(1) mu(B) and theta = -23(1) K, consistent with the presence of high-spin Mn2+ ions and antiferromagnetic interactions. However, the magnetic data reveal a spontaneous magnetisation at 5 K, indicating a canting of Mn2+ moments in the antiferromagnetic ground state. On heating (NH4)(2)[Mn-3(P2O7)(2)(H2O)(2)] in water at 433 K under hydrothermal conditions, Mn-5(HPO4)(2)(PO4)(2).4H(2)O, synthetic hureaulite, is formed.
Resumo:
A novel bis(glycinato) copper(II) paradodecatungstate Na-8[{Cu(gly)(2)}(2)]-{H-2(H2W12O42)}] center dot 24H(2)O (1) has been synthesized under hydrothermal conditions. The crystal structure of 1 reveals an infinite one-dimensional chain along the [100] direction and is built from paradodecatungstate (H2W12O42)(10-) clusters joined through [Cu(gly)(2)] moieties. Parallel chains are interlinked by NaO6 octahedra to generate a two-dimensional network.
Resumo:
A new 3-D zinc phosphate, [C5N2H14][Zn-2(PO3(OH))(3)], has been synthesised under solvothermal conditions in the presence of 1-methylpiperazine. The structure, determined by single-crystal X-ray diffraction at 293 K (RMM = 520.9, orthorhombic, space group P2(1)2(1)2(1); a = 10.0517(2) &ANGS;, b = 10.4293(2) &ANGS; and c = 14.9050(5) &ANGS;; V = 1562.52 &ANGS;(3); Z = 4; R(F) = 2.60%, wR(F) = 2.93%), consists of vertex linked ZnO4 and PO3(OH) tetrahedra assembled into (4.8) net sheets which in turn are linked through further PO3(OH) units to generate a 3-D framework. 1-Methylpiperazinium cations reside within the 3-D channel system, held in place by a strong network of hydrogen bonds. The (4.8) net sheets occur in a number of zeolite structures e.g. ABW and GIS and related zinc phosphate phases. © 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
Resumo:
DiGrignard reagents of the form XMg(CH2)(n)MgX, where X = Br or I and n = 6, 8, 10 or 12, were allowed to react with PhSnCl3 to produce highly cross-linked Ph-Sn polymeric networks. The Sn-H moiety was incorporated into these insoluble network polymers by treatment with Br-2 and NaBH4. Excellent accessibility of the Sn-H was displayed by these solvent penetrable but insoluble networks, giving them higher Sn-H loadings than all previously reported supported reagents. These reagents were totally regenerable in NaBH4 for radical assisted organic synthesis and no detectable leaching of the Sn into solution was observed during these reactions.
Resumo:
The hydrothermal reactions of Ni(NO3)(2).6H(2)O, disodium fumarate (fum) and 1,2-bis(4-pyridyl)ethane (bpe)/1,3-bis(4-pyridyl) propane (bpp) in aqueous-methanol medium yield one 3-D and one 2-D metal-organic hybrid material, [Ni(fum)(bpe)] (1) and [Ni(fum)(bpp)(H2O)] (2), respectively. Complex 1 possesses a novel unprecedented structure, the first example of an "unusual mode" of a five-fold distorted interpenetrated network with metal-ligand linkages where the four six-membered windows in each adamantane-type cage are different. The structural characterization of complex 2 evidences a buckled sheet where nickel ions are in a distorted octahedral geometry, with two carboxylic groups, one acting as a bis-chelate, the other as a bis-monodentate ligand. The metal ion completes the coordination sphere through one water molecule and two bpp nitrogens in cis position. Variable-temperature magnetic measurements of complexes 1 and 2 reveal the existence of very weak antiferromagnetic intramolecular interactions and/or the presence of single-ion zero field splitting (D) of isolated Ni-II ions in both the compounds. Experimentally, both the J parameters are close, comparable and very small. Considering zero-field splitting of Ni-II, the calculated D values are in agreement with values reported in the literature for Ni-II ions. Complex 3, [{Co(phen)}(2)(fum)(2)] (phen=1,10-phenanthroline) is obtained by diffusing methanolic solution of 1,10-phenanthroline on an aqueous layer of disodium fumarate and Co(NO3)(2).6H(2)O. It consists of dimeric Co-II(phen) units, doubly bridged by carboxylate groups in a distorted syn-syn fashion. These fumarate anions act as bis-chelates to form corrugated sheets. The 2D layer has a (4,4) topology, with the nodes represented by the centres of the dimers. The magnetic data were fitted ignoring the very weak coupling through the fumarate pathway and using a dimer model.
Resumo:
Two new iron thioantimonates, [Fe(en)(3)](2)Sb2S5 (.) 0.55H(2)O (1) and [Fe(en)(3)](2)Sb4S8 (2). were synthesised under solvothermal conditions from the reactions of Sb2S3, FeCl2 and S in the presence of ethylenediamine at 413 and 438 K, respectively. The products were characterised by single-crystal X-ray diffraction, elemental analysis and SQUID magnetometry. Compound 1 is unusual in containing isolated Sb2S54- anions formed from two corner-sharing SbS33- trigonal pyramids. These units are arranged in rippled layers, 4 A apart, parallel to the bc-plane. Octahedrally coordinated [Fe(en)(3)](2+) cations lie in depressions within these anionic layers. In compound (2), repeated corner linking of SbS33- trigonal pyramids generates SbS2- chains, which may be considered as a polymerised form of the Sb2S54- anions in 1. The SbS2- chains are separated by [Fe(en)(3)](2+) cations. In both compounds, there is an extensive network of hydrogen bonds between the nitrogen atoms of the ethylenediamine ligands and the sulfur atoms of the anions and, in the case of 1, the uncoordinated water molecule. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis of doubly thermoresponsive PPO-PMPC-PNIPAM triblock copolymer gelators by atom transfer radical polymerization using a PPO-based macroinitiator is described. Provided that the PPO block is sufficiently long, dynamic light scattering and differential scanning calorimetry studies confirm the presence of two separate thermal transitions corresponding to micellization and gelation, as expected. However, these ABC-type triblock copolymers proved to be rather inefficient gelators: free-standing gels at 37 degrees C required a triblock copolymer concentration of around 20 wt%. This gelator performance should be compared with copolymer concentrations of 6-7 wt% required for the PNIPAM-PMPC-PNIPAM triblock copolymers reported previously. Clearly, the separation of micellar self-assembly from gel network formation does not lead to enhanced gelator efficiencies, at least for this particular system. Nevertheless, there are some features of interest in the present study. In particular, close inspection of the viscosity vs temperature plot obtained for a PPO43-PMPC160-PNIPAM(81) triblock copolymer revealed a local minimum in viscosity. This is consistent with intramicelle collapse of the outer PNIPAM blocks prior to the development of the intermicelle hydrophobic interactions that are a prerequisite for macroscopic gelation.
Resumo:
Structural studies of metal complexes of five ditopic hexaazamacrocycles containing two pyridine rings ([n] py(2)N(4) n = 18, 20, 22, 24 and 26) have been carried out. The synthesis of macrocycles [22]- to [26]- py(2)N(4) are also reported. The protonation constants of the last three compounds and the stability constants of their complexes with Ni2+, Cu2+, Zn2+, and Pb2+ were determined at 25 degreesC in 0.10 mol dm(-3) KNO3 in aqueous solution. Our results with [22] py(2)N(4) show significant differences from those described previously, while [24] py(2)N(4) has not been studied before and [ 26] py2N4 is a new compound. Mononuclear and dinuclear complexes of the divalent metal ions studied with [ 22]- to [26]- py(2)N(4) were found in solution. The stability constants for the ML complexes of the three ligands follow the Irving - Williams order: NiL2+ < CuL2+ >> ZnL2+ > PbL2+, however for the dinuclear complexes the values for Pb2+ complexes are higher than the corresponding values for the Ni2+ and the Zn2+ complexes. The X-ray single crystal structures of the supramolecular aggregates [Cu-2([20] py(2)N(4))(H2O)(4)][Cu(H2O)(6)](SO4)(3) . 3H(2)O ( 1) and [Cu-2([20] py(2)N(4))(CH3CN)(4)][Ni([20] py(2)N(4))](2)(ClO4)(8) . H2O (2), which are composed of homodinuclear [Cu-2([20] py(2)N(4)])(H2O)(4)](4+) ( 1a) and [Cu-2([20] py(2)N(4)])(CH3CN))(4)](4+) (2a), and mononuclear species, [Cu(H2O)(6)](2+) (1b) and [Ni([20] py(2)N(4))](2+) ( 2b), respectively, assembled by an extensive network of hydrogen bonds, are also reported. In both homodinuclear complexes the copper centres are located at the end of the macrocycle and display distorted square pyramidal coordination environments with the basal plane defined by three consecutive nitrogen donors and one solvent molecule, water in 1a and acetonitrile in 2a. The macrocycle adopts a concertina-type conformation leading to the formation of macrocyclic cavities with the two copper centres separated by intramolecular distances of 5.526(1) and 5.508(7) Angstrom in 1a and 2a, respectively. The mononuclear complex [Ni([20] py(2)N(4)])](2+) displays a distorted octahedral co-ordination environment with the macrocycle wrapping the metal centre in a helical shape. EPR spectroscopy of the copper complexes indicated the presence of mono- and dinuclear species.
Resumo:
Bis(o-hydroxyacetophenone)nickel(II) dihydrate, on reaction with 1,3-pentanediamine, yields a bis-chelate complex [NiL2]center dot 2H(2)O (1) of mono-condensed tridentate Schiff base ligand HL {2-[1-(3-aminopentylimino)ethyl]phenol}. The Schiff base has been freed from the complex by precipitating the Nil, as a dimethylglyoximato complex. HL reacts smoothly with Ni(SCN)(2)center dot 4H(2)O furnishing the complex [NiL(NCS)] (2) and with CuCl2 center dot 2H(2)O in the presence of NaN3 or NH4SCN producing [CuL(N-3)](2) (3) or [CuL(NCS)] (4). On the other hand, upon reaction with Cu(ClO4)(2)center dot 6H(2)O and Cu(NO3)(2)center dot 3H(2)O, the Schiff base undergoes hydrolysis to yield ternary complexes [Cu(hap)(pn)(H2O)]ClO4 (5) and [Cu(hap)(pn)(H2O)]NO3 (6), respectively (Hhap = o-hydroxyacetophenone and pn = 1,3-pentanediamine). The ligand HL undergoes hydrolysis also on reaction with Ni(ClO4)(2)center dot 6H(2)O or Ni(NO3)(2)center dot 6H(2)O to yield [Ni(hap)(2)] (7). The structures of the complexes 2, 3, 5, 6, and 7 have been confirmed by single-crystal X-ray analysis. In complex 2, Ni-II possesses square-planar geometry, being coordinated by the tridentate mono-negative Schiff base, L and the isothiocyanate group. The coordination environment around Cu-II in complex 3 is very similar to that in complex 2 but here two units are joined together by end-on, axial-equatorial azide bridges to result in a dimer in which the geometry around Cu-II is square pyramidal. In both 5 and 6, the Cu-II atoms display the square-pyramidal environment; the equatorial sites being coordinated by the two amine groups of 1,3-pentanediamine and two oxygen atoms of o-hydroxyacetophenone. The axial site is coordinated by a water molecule. Complex 7 is a square-planar complex with the Ni atom bonded to four oxygen atoms from two hap moieties. The mononuclear units of 2 and dinuclear units of 3 are linked by strong hydrogen bonds to form a one-dimensional network. The mononuclear units of 5 and 6 are joined together to form a dimer by very strong hydrogen bonds through the coordinated water molecule. These dimers are further involved in hydrogen bonding with the respective counteranions to form 2-D net-like open frameworks. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
The synthesis. crystal structure and thermal study of the blue catena-(L-glutamato)-aqua copper(II) monohydrate have been reported. The compound crystallizes in P2(1)2(1)2(1) space group and consists of a polymeric three-dimensional network of copper(II) which is coordinated with the amino nitrogen and the carboxylate oxygen Of L-glutamate, the side chain carboxylate oxygen of a neighbouring L-glutamate and the oxygen of a water molecule in the equatorial position. Weak coordination of two additional glutamate oxygen atoms to both the axial positions Completes a distorted octahedron. The crystal structure shows that the lattice water is stabilized by the formation of strong H-bonding network with the coordinated water molecule. Removal and reabsorption of the water molecule have been studied by thermal analysis.