25 resultados para transition de phase
em CentAUR: Central Archive University of Reading - UK
Resumo:
Proactive motion in hand tracking and in finger bending, in which the body motion occurs prior to the reference signal, was reported by the preceding researchers when the target signals were shown to the subjects at relatively high speed or high frequencies. These phenomena indicate that the human sensory-motor system tends to choose an anticipatory mode rather than a reactive mode, when the target motion is relatively fast. The present research was undertaken to study what kind of mode appears in the sensory-motor system when two persons were asked to track the hand position of the partner with each other at various mean tracking frequency. The experimental results showed a transition from a mutual error-correction mode to a synchronization mode occurred in the same region of the tracking frequency with that of the transition from a reactive error-correction mode to a proactive anticipatory mode in the mechanical target tracking experiments. Present research indicated that synchronization of body motion occurred only when both of the pair subjects operated in a proactive anticipatory mode. We also presented mathematical models to explain the behavior of the error-correction mode and the synchronization mode.
Resumo:
A partial phase diagram is constructed for diblock copolymer melts using lattice-based Monte Carlo simulations. This is done by locating the order-disorder transition (ODT) with the aid of a recently proposed order parameter and identifying the ordered phase over a wide range of copolymer compositions (0.2 <= f <= 0.8). Consistent with experiments, the disordered phase is found to exhibit direct first-order transitions to each of the ordered morphologies. This includes the spontaneous formation of a perforated-lamellar phase, which presumably forms in place of the gyroid morphology due to finite-size and/or nonequilibrium effects. Also included in our study is a detailed examination of disordered cylinder-forming (f=0.3) diblock copolymers, revealing a substantial degree of pretransitional chain stretching and short-range order that set in well before the ODT, as observed previously in analogous studies on lamellar-forming (f=0.5) molecules. (c) 2006 American Institute of Physics.
Resumo:
The role of convective processes in moistening the atmosphere during suppressed periods of the suppressed phase of a Madden-Julian oscillation is investigated in cloud-resolving model (CRM) simulations, and the impact of moistening on the subsequent evolution of convection is assessed as part of a Global Energy and Water Cycle Experiment Cloud System Study (GCSS) intercomparison project. The ability of single-column model (SCM) versions of a number of state-of-the-art climate and numerical weather prediction models to capture these convective processes is also evaluated. During the suppressed periods, the CRMs are found to simulate a maximum moistening around 3 km, which is associated with a predominance of shallow convection. All SCMs produce adequate amounts of shallow convection during the suppressed periods, comparable to that seen in CRMs, but the relatively drier SCMs have higher precipitation rates than the relatively wetter SCMs and CRMs. The relatively drier SCMs dry, rather than moisten, the lower troposphere below the melting level. During the transition periods, convective processes act to moisten the atmosphere above the level at which mean advection changes from moistening to drying, despite an overall drying effect for the column. The SCMs capture some essence of this moistening at upper levels. A gradual transition from shallow to deep convection is simulated by the CRMs and the wetter SCMs during the transition periods, but the onset of deep convection is delayed in the drier SCMs. This results in lower precipitation rates for these SCMs during the active periods, although much better agreement exists between the models at this time.
Resumo:
The phase diagram for diblock copolymer melts is evaluated from lattice-based Monte Carlo simulations using parallel tempering, improving upon earlier simulations that used sequential temperature scans. This new approach locates the order-disorder transition (ODT) far more accurately by the occurrence of a sharp spike in the heat capacity. The present study also performs a more thorough investigation of finite-size effects, which reveals that the gyroid (G) morphology spontaneously forms in place of the perforated-lamellar (PL) phase identified in the earlier study. Nevertheless, there still remains a small region where the PL phase appears to be stable. Interestingly, the lamellar (L) phase next to this region exhibits a small population of transient perforations, which may explain previous scattering experiments suggesting a modulated-lamellar (ML) phase.
Resumo:
Time resolved studies of germylene, GeH2, generated by laser flash photolysis of 3,4-dimethylgermacyclopentene-3, have been carried out to obtain rate constants for its bimolecular reaction with acetylene, C2H2. The reaction was studied in the gas-phase over the pressure range 1-100 Tort, with SF6 as bath gas, at 5 temperatures in the range 297-553 K. The reaction showed a very slight pressure dependence at higher temperatures. The high pressure rate constants (obtained by extrapolation at the three higher temperatures) gave the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1)) (-10.94 +/- 0.05) + (6.10 +/- 0.36 kJ mol(-1))/RTln10. These Arrhenius parameters are consistent with a fast reaction occurring at approximately 30% of the collision rate at 298 K. Quantum chemical calculations (both DFT and ab initio G2//B3LYP and G2//QCISD) of the GeC2H4 potential energy surface (PES), show that GeH2 + C2H2 react initially to form germirene which can isomerise to vinylgermylene with a relatively low barrier. RRKM modelling, based on a loose association transition state, but assuming vinylgermylene is the end product (used in combination with a weak collisional deactivation model) predicts a strong pressure dependence using the calculated energies, in conflict with the experimental evidence. The detailed GeC2H4 PES shows considerable complexity with ten other accessible stable minima (B3LYP level), the three most stable of which are all germylenes. Routes through this complex surface were examined in detail. The only product combination which appears capable of satisfying the (P-3) + C2H4.C2H4 was confirmed as a product by GC observed lack of a strong pressure dependence is Ge(P-3) + C2H4. C2H4 was confirmed as a product by GC analysis. Although the formation of these products are shown to be possible by singlet-triplet curve crossing during dissociation of 1-germiranylidene (1-germacyclopropylidene), it seems more likely (on thermochernical grounds) that the triplet biradical, (GeCH2CH2.)-Ge-., is the immediate product precursor. Comparisons are made with the reaction of SiH2 with C2H2.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, with H2O and with D2O have been carried out in the gas phase at 296 and at 339 K, using laser flash photolysis to generate and monitor SiH2. The reaction was studied over the pressure range 10-200 Torr with SF6 as bath gas. The second-order rate constants obtained were pressure dependent, indicating that the reaction is a third-body assisted association process. Rate constants at 339 K were about half those at 296 K. Isotope effects, k(H)/k(D), were small averaging 1.076 0.080, suggesting no involvement of H- (or D-) atom transfer in the rate determining step. RRKM modeling was undertaken based on a transition state appropriate to formation of the expected zwitterionic donoracceptor complex, H2Si...OH2. Because the reaction is close to the low pressure (third order) region, it is difficult to be definitive about the activated complex structure. Various structures were tried, both with and without the incorporation of rotational modes, leading to values for the high-pressure limiting (i.e., true secondorder) rate constant in the range 9.5 x 10(-11) to 5 x 10(-10) cm(3) molecule' s(-1). The RRKM modeling and mechanistic interpretation is supported by ab initio quantum calculations carried out at the G2 and G3 levels. The results are compared and contrasted with the previous studies.
Resumo:
Time-resolved studies of the reaction of silylene, SiH2, with N-2 have been attempted at 296, 417, and 484 K, using laser flash photolysis to generate and monitor SiH2. No conclusive evidence for reaction could be found even with pressures of N-2 of 500 Torr. This enables us to set upper limits of ca. 3 x 10(-15) cm(3) molecule(-1) s(-1) for the second-order rate constants. A lower limit for the activation energy, E-a, of ca. 47 kJ mol(-1) is also derived. Ab initio calculations at the G3 level indicate that the only SiH2N2 species of lower energy than the separated reactants is the H2Si...N-2 donor-acceptor (ylid) species with a relative enthalpy of -26 kJ mol(-1), insufficient for observation of reaction under the experimental conditions. Ten bound species on the SiH2N2 surface were found and their energies calculated as well as those of the potential dissociation products: HSiN + NH((3)Sigma(-)) and HNSi + NH((3)Sigma(-)). Additionally two of the transition states involving cyclic-SiH2N2 (siladiazirine) were explored. It appears that siladiazirine is neither thermodynamically nor kinetically stable. The findings indicate that Si-N-d bonds (where N-d is double-bonded nitrogen) are not particularly strong. An unexpected cyclic intermediate was found in the isomerization of silaisocyanamide to silacyanamide.
Resumo:
In the past two decades, the geometric pathways involved in the transformations between inverse bicontinuous cubic phases in amphiphilic systems have been extensively theoretically modeled. However, little experimental data exists on the cubic-cubic transformation in pure lipid systems. We have used pressure-jump time-resolved X-ray diffraction to investigate the transition between the gyroid Q(II)(G) and double-diamond Q(II)(D) phases in mixtures of 1-monoolein in 30 wt% water. We find for this system that the cubic-cubic transition occurs without any detectable intermediate structures. In addition, we have determined the kinetics of the transition, in both the forward and reverse directions, as a function of pressure-jump amplitude, temperature, and water content. A recently developed model allows (at least in principle) the calculation of the activation energy for lipid phase transitions from such data. The analysis is applicable only if kinetic reproducibility is achieved, at least within one sample, and achievement of such kinetic reproducibility is shown here, by carrying out prolonged pressure-cycling. The rate of transformation shows clear and consistent trends with pressure-jump amplitude, temperature, and water content, all of which are shown to be in agreement with the effect of the shift in the position of the cubic-cubic phase boundary following a change in the thermodynamic parameters.
Resumo:
We present a kinetic model for transformations between different self-assembled lipid structures. The model shows how data on the rates of phase transitions between mesophases of different geometries can be used to provide information on the mechanisms of the transformations and the transition states involved. This can be used, for example, to gain an insight into intermediate structures in cell membrane fission or fusion. In cases where the monolayer curvature changes on going from the initial to the final mesophase, we consider the phase transition to be driven primarily by the change in the relaxed curvature with pressure or temperature, which alters the relative curvature elastic energies of the two mesophase structures. Using this model, we have analyzed previously published kinetic data on the inter-conversion of inverse bicontinuous cubic phases in the 1-monoolein-30 wt% water system. The data are for a transition between QII(G) and QII(D) phases, and our analysis indicates that the transition state more closely resembles the QII(D) than the QII(G) phase. Using estimated values for the monolayer mean curvatures of the QII(G) and QII(D) phases of -0.123 nm(-1) and -0.133 nm(-1), respectively, gives values for the monolayer mean curvature of the transition state of between -0.131 nm(-1) and -0.132 nm(-1). Furthermore, we estimate that several thousand molecules undergo the phase transition cooperatively within one "cooperative unit", equivalent to 1-2 unit cells of QII(G) or 4-10 unit cells of QII(D).
Resumo:
Ribosome modulation factor (RMF) was shown to have an influence on the survival of Escherichia coli under acid stress during stationary phase, since the viability of cultures of a mutant strain lacking functional RMF decreased more rapidly than that of the parent strain at pH 3. Loss of ribosomes was observed in both strains when exposed to low pH, although this occurred at a higher rate in the RMF-deficient mutant strain, which also suffered from higher levels of rRNA degradation. It was concluded that the action of RMF in limiting the damage to rRNA contributed to the protection of E coli under acid stress. Expression of the rmf gene was lower during stationary phase after growth in acidified media compared to media containing no added acid, and the increased rmf expression associated with transition from exponential phase to stationary phase was much reduced in acidified media. It was demonstrated that RMF was not involved in the stationary-phase acid-tolerance response in E coli by which growth under acidic conditions confers protection against subsequent acid shock. This response was sufficient to overcome the increased vulnerability of the RMF-deficient mutant strain to acid stress at pH values between 6.5 and 5.5.
Resumo:
The role of cell cycle dependent molecules in controlling the switch from cardiac myocyte hyperplasia to hypertrophy remains unclear, although in the rat this process occurs between day 3 and 4 after birth. In this study we have determined (1) cell cycle profiles by fluorescence activated cell sorting (FACS); and (2) expressions, co-expressions and activities of a number of cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors by reverse transcriptase-polymerase chain reaction (RT-PCR), immunoblotting andin vitrokinase assays in freshly isolated rat cardiac myocytes obtained from 2, 3, 4 and 5-day-old animals. The percentage of myocytes found in the S phase of the cell cycle decreased significantly during the transition from hyperplasia to hypertrophy (5.5, 3.5, 2.3 and 1.9% of cells in 2-, 3-, 4- and 5-day-old myocytes, respectively,P<0.05), concomitant with a significant increase in the percentage of G0/G1phase cells. At the molecular level, the expressions and activities of G1/S and G2/M phase acting cyclins and CDKs were downregulated significantly during the transition from hyperplasia to hypertrophy, whereas the expressions and activities of G1phase acting cyclins and CDKs were upregulated significantly during this transition. In addition, p21CIP1- and p27KIP1- associated CDK kinase activities remained relatively constant when histone H1 was used as a substrate, whereas phosphorylation of the retinoblastoma protein was upregulated significantly during the transition from hyperplasia to hypertrophy. Thus, there is a progressive and significant G0/G1phase blockade during the transition from myocyte hyperplasia to hypertrophy. Whilst CDK2 and cdc2 may be pivotal in the withdrawal of cardiac myocytes from the cell cycle, CDK4 and CDK6 may be critical for maintaining hypertrophic growth of the myocyte during development.
Resumo:
The self-assembly of peptide YYKLVFFC based on a fragment of the amyloid beta (A) peptide, A beta 16-20, KLVFF has been studied in aqueous solution. The peptide is designed with multiple functional residues to examine the interplay between aromatic interactions and charge on the self-assembly, as well as specific transformations such as the pH-induced phenol-phenolate transition of the tyrosine residue. Circular dichroism (CD) and Fourier-transform infrared (FTIR) spectroscopies are used to investigate the conditions for beta-sheet self-assembly and the role of aromatic interactions in the CD spectrum as a function of pH and concentration. The formation of well-defined fibrils at pH 4.7 is confirmed by cryo-TEM (transmission electron microscope) and negative stain TEM. The morphology changes at higher pH, and aggregates of short twisted fibrils are observed at pH 11. Polarized optical microscopy shows birefringence at a low concentration (1 wt.-%) of YYKLVFFC in aqueous solution, and small-angle X-ray scattering was used to probe nematic phase formation in more detail. A pH-induced transition from nematic to isotropic phases is observed on increasing pH that appears to be correlated to a reduction in aggregate anisotropy upon increasing pH.
Resumo:
Time-resolved studies of chlorosilylene, ClSiH, generated by the 193 nm laser flash photolysis of 1-chloro-1-silacyclopent-3-ene, are carried out to obtain rate constants for its bimolecular reaction with ethene, C2H4, in the gas-phase. The reaction is studied over the pressure range 0.13-13.3 kPa (with added SF6) at five temperatures in the range 296-562 K. The second order rate constants, obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1))=(-10.55 +/- 0.10) + (3.86 +/- 0.70) kJ mol(-1)/RT ln10. The Arrhenius parameters correspond to a loose transition state and the rate constant at room temperature is 43% of that for SiH2 + C2H4, showing that the deactivating effect of Cl-for-H substitution in the silylene is not large. Quantum chemical calculations of the potential energy surface for this reaction at the G3MP2//B3LYP level show that, as well as 1-chlorosilirane, ethylchlorosilylene is a viable product. The calculations reveal how the added effect of the Cl atom on the divalent state stabilisation of ClSiH influences the course of this reaction. RRKM calculations of the reaction pressure dependence suggest that ethylchlorosilylene should be the main product. The results are compared and contrasted with those of SiH2 and SiCl2 with C2H4.
Resumo:
The LiHoxY1−xF4 Ising magnetic material subject to a magnetic field perpendicular to the Ho3+ Ising direction has shown over the past 20 years to be a host of very interesting thermodynamic and magnetic phenomena. Unfortunately, the availability of other magnetic materials other than LiHoxY1−xF4 that may be described by a transverse-field Ising model remains very much limited. It is in this context that we use here a mean-field theory to investigate the suitability of the Ho(OH)3, Dy(OH)3, and Tb(OH)3 insulating hexagonal dipolar Ising-type ferromagnets for the study of the quantum phase transition induced by a magnetic field, Bx, applied perpendicular to the Ising spin direction. Experimentally, the zero-field critical (Curie) temperatures are known to be Tc≈2.54, 3.48, and 3.72 K, for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. From our calculations we estimate the critical transverse field, Bxc, to destroy ferromagnetic order at zero temperature to be Bxc=4.35, 5.03, and 54.81 T for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. We find that Ho(OH)3, similarly to LiHoF4, can be quantitatively described by an effective S=1/2 transverse-field Ising model. This is not the case for Dy(OH)3 due to the strong admixing between the ground doublet and first excited doublet induced by the dipolar interactions. Furthermore, we find that the paramagnetic (PM) to ferromagnetic (FM) transition in Dy(OH)3 becomes first order for strong Bx and low temperatures. Hence, the PM to FM zero-temperature transition in Dy(OH)3 may be first order and not quantum critical. We investigate the effect of competing antiferromagnetic nearest-neighbor exchange and applied magnetic field, Bz, along the Ising spin direction ẑ on the first-order transition in Dy(OH)3. We conclude from these preliminary calculations that Ho(OH)3 and Dy(OH)3 and their Y3+ diamagnetically diluted variants, HoxY1−x(OH)3 and DyxY1−x(OH)3, are potentially interesting systems to study transverse-field-induced quantum fluctuations effects in hard axis (Ising-type) magnetic materials.
Resumo:
The phase diagram for an AB diblock copolymer melt with polydisperse A blocks and monodisperse B blocks is evaluated using lattice-based Monte Carlo simulations. Experiments on this system have shown that the A-block polydispersity shifts the order-order transitions (OOTs) towards higher A-monomer content, while the order-disorder transition (ODT) moves towards higher temperatures when the A blocks form the minority domains and lower temperatures when the A blocks form the matrix. Although self-consistent field theory (SCFT) correctly accounts for the change in the OOTs, it incorrectly predicts the ODT to shift towards higher temperatures at all diblock copolymer compositions. In contrast, our simulations predict the correct shifts for both the OOTs and the ODT. This implies that polydispersity amplifies the fluctuation-induced correction to the mean-field ODT, which we attribute to a reduction in packing frustration. Consistent with this explanation, polydispersity is found to enhance the stability of the perforated-lamellar phase.