3 resultados para transformation efficiency
em CentAUR: Central Archive University of Reading - UK
Resumo:
We report here the construction and characterisation of a BAC library from the maize flint inbred line F2, widely used in European maize breeding programs. The library contains 86,858 clones with an average insert size of approximately 90 kb, giving approximately 3.2-times genome coverage. High-efficiency BAC cloning was achieved through the use of a single size selection for the high-molecular-weight genomic DNA, and co-transformation of the ligation with yeast tRNA to optimise transformation efficiency. Characterisation of the library showed that less than 0.5% of the clones contained no inserts, while 5.52% of clones consisted of chloroplast DNA. The library was gridded onto 29 nylon filters in a double-spotted 8 × 8 array, and screened by hybridisation with a number of single-copy and gene-family probes. A 3-dimensional DNA pooling scheme was used to allow rapid PCR screening of the library based on primer pairs from simple sequence repeat (SSR) and expressed sequence tag (EST) markers. Positive clones were obtained in all hybridisation and PCR screens carried out so far. Six BAC clones, which hybridised to a portion of the cloned Rp1-D rust resistance gene, were further characterised and found to form contigs covering most of this complex resistance locus.
Resumo:
An optimized protocol has been developed for the efficient and rapid genetic modification of sugar beet (Beta vulgaris L.). A polyethylene glycol-mediated DNA transformation technique could be applied to protoplast populations enriched specifically for a single totipotent cell type derived from stomatal guard cells, to achieve high transformation frequencies. Bialaphos resistance, conferred by the pat gene, produced a highly efficient selection system. The majority of plants were obtained within 8 to 9 weeks and were appropriate for plant breeding purposes. All were resistant to glufosinate-ammonium-based herbicides. Detailed genomic characterization has verified transgene integration, and progeny analysis showed Mendelian inheritance.
Resumo:
In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.