5 resultados para topographic analysis
em CentAUR: Central Archive University of Reading - UK
Resumo:
In this work a new method for clustering and building a topographic representation of a bacteria taxonomy is presented. The method is based on the analysis of stable parts of the genome, the so-called “housekeeping genes”. The proposed method generates topographic maps of the bacteria taxonomy, where relations among different type strains can be visually inspected and verified. Two well known DNA alignement algorithms are applied to the genomic sequences. Topographic maps are optimized to represent the similarity among the sequences according to their evolutionary distances. The experimental analysis is carried out on 147 type strains of the Gammaprotebacteria class by means of the 16S rRNA housekeeping gene. Complete sequences of the gene have been retrieved from the NCBI public database. In the experimental tests the maps show clusters of homologous type strains and present some singular cases potentially due to incorrect classification or erroneous annotations in the database.
Resumo:
The study of motor unit action potential (MUAP) activity from electrornyographic signals is an important stage on neurological investigations that aim to understand the state of the neuromuscular system. In this context, the identification and clustering of MUAPs that exhibit common characteristics, and the assessment of which data features are most relevant for the definition of such cluster structure are central issues. In this paper, we propose the application of an unsupervised Feature Relevance Determination (FRD) method to the analysis of experimental MUAPs obtained from healthy human subjects. In contrast to approaches that require the knowledge of a priori information from the data, this FRD method is embedded on a constrained mixture model, known as Generative Topographic Mapping, which simultaneously performs clustering and visualization of MUAPs. The experimental results of the analysis of a data set consisting of MUAPs measured from the surface of the First Dorsal Interosseous, a hand muscle, indicate that the MUAP features corresponding to the hyperpolarization period in the physisiological process of generation of muscle fibre action potentials are consistently estimated as the most relevant and, therefore, as those that should be paid preferential attention for the interpretation of the MUAP groupings.
Resumo:
The identification and visualization of clusters formed by motor unit action potentials (MUAPs) is an essential step in investigations seeking to explain the control of the neuromuscular system. This work introduces the generative topographic mapping (GTM), a novel machine learning tool, for clustering of MUAPs, and also it extends the GTM technique to provide a way of visualizing MUAPs. The performance of GTM was compared to that of three other clustering methods: the self-organizing map (SOM), a Gaussian mixture model (GMM), and the neural-gas network (NGN). The results, based on the study of experimental MUAPs, showed that the rate of success of both GTM and SOM outperformed that of GMM and NGN, and also that GTM may in practice be used as a principled alternative to the SOM in the study of MUAPs. A visualization tool, which we called GTM grid, was devised for visualization of MUAPs lying in a high-dimensional space. The visualization provided by the GTM grid was compared to that obtained from principal component analysis (PCA). (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.