37 resultados para thrombocyte adhesion

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To investigate the changes in the surface properties of Lactobacillus rhamnosus GG during growth, and relate them with the ability of the Lactobacillus cells to adhere to Caco-2 cells. Methods and Results: Lactobacillus rhamnosus GG was grown in complex medium, and cell samples taken at four time points and freeze dried. Untreated and trypsin treated freeze dried samples were analysed for their composition using SDS-PAGE analysis and Fourier transform infrared spectroscopy (FTIR), hydrophobicity and zeta potential, and for their ability to adhere to Caco-2 cells. The results suggested that in the case of early exponential phase samples (4 and 8 h), the net surface properties, i.e. hydrophobicity and charge, were determined to a large extent by anionic hydrophilic components, whereas in the case of stationary phase samples (13 and 26 h), hydrophobic proteins seemed to play the biggest role. Considerable differences were also observed between the ability of the different samples to adhere to Caco-2 cells; maximum adhesion was observed for the early stationary phase sample (13 h). The results suggested that the adhesion to Caco-2 cells was influenced by both proteins and non-proteinaceous compounds present on the surface of the Lactobacillus cells. Conclusion: The surface properties of Lact. rhamnosus GG changed during growth, which in return affected the ability of the Lactobacillus cells to adhere to Caco-2 cells. Significance and Impact of the Study: The levels of adhesion of Lactobacillus cells to Caco-2 cells were influenced by the growth time and reflected changes on the bacterial surface. This study provides critical information on the physicochemical factors that influence bacterial adhesion to intestinal cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of Staphylococcus aureus to colonize the human nares is a crucial prerequisite for disease. IsdA is a major S. aureus surface protein that is expressed during human infection and required for nasal colonization and survival on human skin. In this work, we show that IsdA binds to involucrin, loricrin, and cytokeratin K10, proteins that are present in the cornified envelope of human desquamated epithelial cells. To measure the forces and dynamics of the interaction between IsdA and loricrin (the most abundant protein of the cornified envelope), single-molecule force spectroscopy was used, demonstrating high-specificity binding. IsdA acts as a cellular adhesin to the human ligands, promoting whole-cell binding to immobilized proteins, even in the absence of other S. aureus components (as shown by heterologous expression in Lactococcus lactis). Inhibition experiments revealed the binding of the human ligands to the same IsdA region. This region was mapped to the NEAT domain of IsdA. The NEAT domain also was found to be required for S. aureus whole-cell binding to the ligands as well as to human nasal cells. Thus, IsdA is an important adhesin to human ligands, which predominate in its primary ecological niche.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used two-dimensional difference gel electrophoresis to determine early changes in the stress-response pathways that precede focal adhesion disorganization linked to the onset of apoptosis of renal epithelial cells. Treatment of LLC-PK1 cells with the model nephrotoxicant 1,2-(dichlorovinyl)-L-cysteine (DCVC) resulted in a >1.5-fold up- and down-regulation of 14 and 9 proteins, respectively, preceding the onset of apoptosis. Proteins included those involved in metabolism, i.e. aconitase and pyruvate dehydrogenase, and those related to stress responses and cytoskeletal reorganization, i.e. cofilin, Hsp27, and alpha-b-crystallin. The most prominent changes were found for Hsp27, which was related to a pI shift in association with an altered phosphorylation status of serine residue 82. Although both p38 and JNK were activated by DCVC, only inhibition of p38 with SB203580 reduced Hsp27 phosphorylation, which was associated with accelerated reorganization of focal adhesions, cell detachment, and apoptosis. In contrast, inhibition of JNK with SP600125 maintained cell adhesion as well as protection against apoptosis. Active JNK co-localized at focal adhesions after DCVC treatment in a FAK-dependent manner. Inhibition of active JNK localization at focal adhesions did not prevent DCVC-induced phosphorylation of Hsp27. Overexpression of a phosphorylation-defective mutant Hsp27 acted as a dominant negative and accelerated the DCVC-induced changes in the focal adhesions as well as the onset of apoptosis. Our data fit a model whereby early p38 activation results in a rapid phosphorylation of Hsp27, a requirement for proper maintenance of cell adhesion, thus suppressing renal epithelial cell apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platelets perform a central role in haemostasis and thrombosis. They adhere to subendothelial collagens exposed at sites of blood vessel injury via the glycoprotein (GP) 1b-V-IX receptor complex, GPV1 and integrin alpha(2)beta(1)-These receptors perform distinct functions in the regulation of cell signalling involving non-receptor tyrosine kinases (e.g. Src, Fyn, Lyn, Syk and Btk), adaptor proteins, phospholipase C and lipid kinases such as phosphoinositide 3-kinase. They are also coupled to an increase in cytosolic calcium levels and protein kinase C activation, leading to the secretion of paracrine/autocrine platelet factors and an increase in integrin receptor affinities. Through the binding of plasma fibrinogen and von Willebrand Factor to integrin alphaIIbbeta(3), a platelet thrombus is formed. Although increasing evidence indicates that each of the adhesion receptors GPIb-V-IX and GPV1 and integrins alpha(2)beta(1) and alpha(IIb)beta(3) contribute to the signalling that regulates this process, the individual roles of each are only beginning to be dissected. By contrast, adhesion receptor signalling through platelet endothelial cell adhesion molecule 1 (PECAM-1) is implicated in the inhibition of platelet function and thrombus formation in the healthy circulation. Recent studies indicate that understanding of platelet adhesion signalling mechanisms might enable the development of new strategies to treat and prevent thrombosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective - Platelet stimulation by collagen and collagen-related peptides (CRPs) is associated with activation of protein tyrosine kinases. In the present study, we investigated the role of Src family tyrosine kinases in the initial adhesion events of human platelets to collagen and cross-linked CRP. Methods and Results - Under arterial flow conditions, a glycoprotein VI - specific substrate, cross-linked CRP, caused rapid (<2 second) platelet retention and protein tyrosine phosphorylation that were markedly decreased by the Src family kinase inhibitor pyrozolopyrimidine (PP2) or by aggregation inhibitor GRGDSP. CRP-induced platelet retention was transient, and 90% of single platelets or aggregates detached within seconds. PP2, although having no effect on RGD peptide-binding to CRP, completely blocked aggregation and tyrosine phosphorylation of Syk and phospholipase Cγ2 (PLCγ2). In contrast, PP2 weakly (<30%) suppressed firm adhesion to collagen mediated primarily by the alpha(2)beta(1) integrin. Although PP2 prevented activation of Syk and PLCgamma2 in collagen-adherent platelets, tyrosine phosphorylation of several unidentified protein bands persisted, as did autophosphorylation of pp125(FAK). Conclusions - These findings indicate that activation of Src-tyrosine kinases Syk and PLCgamma2 is not required for the initial stable attachment of human platelets to collagen and for FAK autophosphorylation. However, Src-tyrosine kinases are critical for glycoprotein VI - mediated signaling leading to platelet aggregation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used two-dimensional difference gel electrophoresis to determine early changes in the stress-response pathways that precede focal adhesion disorganization linked to the onset of apoptosis of renal epithelial cells. Treatment of LLC-PK1 cells with the model nephrotoxicant 1,2-(dichlorovinyl)-L-cysteine ( DCVC) resulted in a > 1.5-fold up- and down-regulation of 14 and 9 proteins, respectively, preceding the onset of apoptosis. Proteins included those involved in metabolism, i.e. aconitase and pyruvate dehydrogenase, and those related to stress responses and cytoskeletal reorganization, i.e. cofilin, Hsp27, and alpha-b-crystallin. The most prominent changes were found for Hsp27, which was related to a pI shift in association with an altered phosphorylation status of serine residue 82. Although both p38 and JNK were activated by DCVC, only inhibition of p38 with SB203580 reduced Hsp27 phosphorylation, which was associated with accelerated reorganization of focal adhesions, cell detachment, and apoptosis. In contrast, inhibition of JNK with SP600125 maintained cell adhesion as well as protection against apoptosis. Active JNK co-localized at focal adhesions after DCVC treatment in a FAK-dependent manner. Inhibition of active JNK localization at focal adhesions did not prevent DCVC-induced phosphorylation of Hsp27. Overexpression of a phosphorylation-defective mutant Hsp27 acted as a dominant negative and accelerated the DCVC-induced changes in the focal adhesions as well as the onset of apoptosis. Our data fit a model whereby early p38 activation results in a rapid phosphorylation of Hsp27, a requirement for proper maintenance of cell adhesion, thus suppressing renal epithelial cell apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe experiments designed to explore the possibility of using amyloid fibrils as new nanoscale biomaterials for promoting and exploiting cell adhesion, migration and differentiation in vitro. We created peptides that add the biological cell adhesion sequence (RGD) or a control sequence (RAD) to the C-terminus of an 11-residue peptide corresponding to residues 105-115 of the amyloidogenic protein transthyretin. These peptides readily self-assemble in aqueous solution to form amyloid fibrils, and X-ray fibre diffraction shows that they possess the same strand and sheet spacing in the characteristic cross-beta structure as do fibrils formed by the parent peptide. We report that the fibrils containing the RGD sequence are bioactive and that these fibrils interact specifically with cells via the RGD group displayed on the fibril surface. As the design of such functionalized fibrils can be systematically altered, these findings suggest that it will be possible to generate nanomaterials based on amyloid fibrils that are tailored to promote interactions with a wide variety of cell types. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caseinoglycomacropeptide (CGMP) derived from kappa-casein was investigated for its ability to inhibit the adhesion of 3 strains of verotoxigenic Escherichia coli (VTEC) and 3 strains of enteropathogenic Escherichia coli (EPEC) to human HT29 tissue cell cultures. Effects on adhesion of Desulfovibrio desulfuricans, Lactobacillus pentosus, Lactobacillus casei, Lactobacillus acidophilus, and Lactobacillus gasseri were also investigated. Generally, CGMP exerted effective anti-adhesive properties at a dose of 2.5 mg/mL, albeit with a high degree of strain specificity. The CGMP reduced adhesion of VTEC strains to < 50% of the control and reduced adhesion of EPEC strains to between 80 and 10% of the control. The CGMP also reduced the adhesion of L. pentosus and L. casei to 44 and 42%, respectively. A slight but significant reduction of L. acidophilus, to 81%, was observed, but no significant effects were detected with either Dsv. desulfuricans or L. gasseri. Further investigation of the dose response relationships with the E. coli strains gave IC50 values ranging between 0.12 and 1.06 mg/mL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to investigate the ability of pectic oligosaccharides (POS) to inhibit adhesion of three strains of verotoxigenic Escherichia coli, three strains of enteropathogenic E. coli, and one nonclinical strain of Desulfovibrio desulfuricans to human intestinal epithelial cell cultures. Lactobacillus acidophilus and Lactobacillus gasseri were included for comparison. Attachment wits determined in the human HT29 cell line by viable Count of adherent bacteria. POS in buffer at pH 7.2 were antiadhesive at a dose of 2.5 mg ml(-1), reducing adhesion of enteropathogenic E. coli and verotoxigenic E. coli strains to less than 30% of control values. Concentrations resulting in 50% inhibition ranged from 0.15 to 0.46 mg ml(-1). L. acidophilus was not significantly affected. but adhesion of L. gasseri was reduced to 29% of the control value. POS reduced the adhesion of D. desulfuricans to 0.33% of the control value. POS also had a protective effect against E. coli verocytotoxins VT1 and VT2 at concentrations of 0.01 and 1 mu g ml(-1), respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of chito-oligosaccharides (COS) to inhibit selected intestinal bacteria was investigated. COS at 2.5 mg ml(-1) had no significant effect on the adhesion of three strains of verotoxigenic Escherichia coli (VTEC), Lactobacillus pentosus, L. casei or L. gasseri to human HT29 cells in tissue culture. However, COS significantly inhibited adhesion of three strains of enteropathogenic E. coli (EPEC) to below 30% of the level of adhesion seen in the controls. Dose-response curves were constructed to further characterise the inhibition of EPEC strains to HT29 cells. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Platelet activation by collagen depends on signals transduced by the glycoprotein (GP)VI–Fc receptor (FcR)-chain collagen receptor complex, which involves recruitment of phosphatidylinositol 3-kinase (PI3K) to phosphorylated tyrosines in the linker for activation of T cells (LAT). An interaction between the p85 regulatory subunit of PI3K and the scaffolding molecule Grb-2-associated binding protein-1 (Gab1), which is regulated by binding of the Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to Gab1, has been shown in other cell types to sustain PI3K activity to elicit cellular responses. Platelet endothelial cell adhesion molecule-1 (PECAM-1) functions as a negative regulator of platelet reactivity and thrombosis, at least in part by inhibiting GPVI–FcR-chain signaling via recruitment of SHP-2 to phosphorylated immunoreceptor tyrosine-based inhibitory motifs in PECAM-1. Objective: To investigate the possibility that PECAM-1 regulates the formation of the Gab1–p85 signaling complexes, and the potential effect of such interactions on GPVI-mediated platelet activation in platelets. Methods: The ability of PECAM-1 signaling to modulate the LAT signalosome was investigated with immunoblotting assays on human platelets and knockout mouse platelets. Results: PECAM-1-associated SHP-2 in collagen-stimulated platelets binds to p85, which results in diminished levels of association with both Gab1 and LAT and reduced collagen-stimulated PI3K signaling. We therefore propose that PECAM-1-mediated inhibition of GPVI-dependent platelet responses result, at least in part, from recruitment of SHP-2–p85 complexes to tyrosine-phosphorylated PECAM-1, which diminishes the association of PI3K with activatory signaling molecules, such as Gab1 and LAT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembly in aqueous solution has been investigated for two Fmoc [Fmoc ¼ N-(fluorenyl)-9-methoxycarbonyl] tetrapeptides comprising the RGDS cell adhesion motif from fibronectin or the scrambled sequence GRDS. The hydrophobic Fmoc unit confers amphiphilicity on the molecules, and introduces aromatic stacking interactions. Circular dichroism and FTIR spectroscopy show that the self-assembly of both peptides at low concentration is dominated by interactions among Fmoc units, although Fmoc-GRDS shows b-sheet features, at lower concentration than Fmoc-RGDS. Fibre X-ray diffraction indicates b-sheet formation by both peptides at sufficiently high concentration. Strong alignment effects are revealed by linear dichroism experiments for Fmoc-GRDS. Cryo-TEM and smallangle X-ray scattering (SAXS) reveal that both samples form fibrils with a diameter of approximately 10 nm. Both Fmoc-tetrapeptides form self-supporting hydrogels at sufficiently high concentration. Dynamic shear rheometry enabled measurements of the moduli for the Fmoc-GRDS hydrogel, however syneresis was observed for the Fmoc-RGDS hydrogel which was significantly less stable to shear. Molecular dynamics computer simulations were carried out considering parallel and antiparallel b-sheet configurations of systems containing 7 and 21 molecules of Fmoc-RGDS or Fmoc-GRDS, the results being analyzed in terms of both intermolecular structural parameters and energy contributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effects of fat and sugar levels on the surface properties of Lactobacillus rhamnosus GG during storage in food model systems, simulating yogurt and ice cream, and related them with the ability of the bacterial cells to adhere to Caco-2 cells. Freeze-dried L. rhamnosus GG cells were added to the model food systems and stored for 7 days. The bacterial cells were analyzed for cell viability, hydrophobicity, ζ potential, and their ability to adhere to Caco-2 cells. The results indicated that the food type and its composition affected the surface and adhesion properties of the bacterial cells during storage, with yogurt being a better delivery vehicle than ice cream in terms of bacterial adhesion to Caco-2 cells. The most important factor influencing bacterial adhesion was the storage time rather than the levels of fats and sugars, indicating that conformational changes were taking place on the surface of the bacterial cells during storage.