8 resultados para thiophene
em CentAUR: Central Archive University of Reading - UK
Resumo:
Reaction of fac-[ Mo( CO)(3)( NCMe)(3)] with three equivalents of NCCH2(C4H3S- 3) in acetonitrile gives the tris(thiophene- 3- acetonitrile) complex, fac-[Mo(CO)(3){NCCH2(C4H3S-3)}(3)] (1) in 7% yield. Complex 1 crystallizes out in the orthorhombic space group Pnma with a = 12.714( 17), b = 16.41( 2), c = 11.304(16) Angstrom, Z = 4. The structure has crystallographic m symmetry and the metal is in an almost perfect octahedral environment, with a facial arrangement of carbonyl and thiophene- 3- acetonitrile groups. The thiophene rings are disordered.
Resumo:
Infrared intensities of the fundamental, overtone and combination transitions in furan, pyrrole and thiophene have been calculated using the variational normal coordinate code MULTIMODE. We use pure vibrational wavefunctions, and quartic force fields and cubic dipole moment vector surfaces, generated by density functional theory. The results are compared graphically with second-order perturbation calculations and with relative intensities from experiment for furan and pyrrole.
Resumo:
In the field of conducting polymers, both poly(pyrrole) and poly(thiophene) have been investigated extensively and are used currently in a wide variety of applications including microelectronics, electrode materials, sensors and optoelectronics. Amongst these polymers, 3- and 3,4- substituted poly(pyrroles) and poly(thiophenes) have received significant attention in recent years as demonstrated by the increase in the number of patents and publications that describe their use. This review covers the development in the synthesis of 3- and 3,4- Substituted poly(pyrroles) and poly(thiophenes) over the last 30 years, their polymerisation in addition to describing the material properties and applications of the resulting polymers. In particular, this review focuses upon the variety of methodologies employed for the synthesis of 3- and 3,4-substituted pyrroles and thiophenes as well as upon the broad range of functional groups that can be attached to the heterocyclic ring system in order to tailor the properties of the resulting polymers.
Resumo:
Several cis-dioxomolybdenum complexes of two tridentate ONS chelating ligands H2L1 and H2L2 ( obtained by condensation of S-benzyl and S-methyl dithiocarbazates with 2-hydroxyacetophenone) have been prepared and characterized. Complexes 1 and 2 are found to be of the form MoO2 (CH3OH)L-1.CH3OH and MoO2L, respectively, (where L2-=dianion of H2L1 and H2L2). The sixth coordination site of the complexes acts as a binding site for various neutral monodentate Lewis bases, B, forming complexes 3 - 10 of the type MoO2LB (where B=gamma-picoline, imidazole, thiophene, THF). The complexes were characterized by elemental analyses, various spectroscopic techniques, ( UV-Vis, IR and H-1 NMR), measurement of magnetic susceptibility at room temperature, molar conductivity in solution and by cyclic voltammetry. Two of the complexes MoO2(CH3OH)L-1.CH3OH (1) and MoO2L1(imz) (5) were structurally characterized by single crystal X-ray diffraction. Oxo abstruction reactions of 1 and 5 led to formation of oxomolybdenum(IV) complex of the MoOL type.
Resumo:
From the carbolithiation of N,N-dimethylamino fulvene (3a) and different ortho-lithiated heterocycles (furan, thiophene and N-methylpyrrole), the corresponding lithium cyclopentadienide intermediate (4a-c) was formed. These three lithiated intermediates underwent a transmetallation reaction with TiCl4 resulting in dimethylamino-functionalised titanocenes 5a-c. When these titanocenes were tested against LLC-PK cells, the IC50 values obtained were of 240, and 28 mu M for titanocenes 5a and 5b, respectively. The most cytotoxic titanocene 5c with an IC50 value of 5.5 mu M is found to be almost as cytotoxic as cis-platin, which showed an IC50 value of 3.3 mu M, when tested on the LLC-PK cell line, and titanocene 5c is approximately 400 times better than titanocene dichloride itself. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Efficient photocyclization from a low-lying triplet state is reported for a photochromic dithienylperfluorocyclopentene with Ru(bpy)(3) units attached via a phenylene linker to the thiophene rings. The ring-closure reaction in the nanosecond domain is sensitized by the metal complexes. Upon photoexcitation into the lowest Ru-to-bpy (MLCT)-M-1 state followed by intersystem crossing to emitting (MLCT)-M-3 states, photoreactive (IL)-I-3 states are populated by an efficient energy-transfer process. The involvement of these (IL)-I-3 states explains the quantum yield of the photocyclization, which is independent of the excitation wavelength but decreases strongly in the presence of dioxygen. This behavior differs substantially from the photocyclization of the nonemissive dithienylperfluorocyclopentene free ligand, which occurs from the lowest (IL)-I-1 state on a picosecond time scale and is insensitive to oxygen quenching. Cyclic voltammetric studies have also been performed to gain further insight into the energetics of the system. The very high photocyclization quantum yields, far above 0.5 in both cases, are ascribed to the strong steric repulsion between the bulky substituents on the dithienylperfluorocyclopentene bridge bearing the chelating bipyridine sites or the Ru(bpy)(3) moieties, forcing the system to adopt nearly exclusively the reactive antiparallel conformation. In contrast, replacement of both Ru(II) centers by Os(II) completely prevents the photocyclization reaction upon light excitation into the low-lying Os-to-bpy (MLCT)-M-1 state. The photoreaction can only be triggered by optical population of the higher lying (IL)-I-1 excited state of the central photochromic unit, but its yield is low due to efficient energy transfer to the luminescent lowest (MLCT)-M-3 state.
Resumo:
Radical cations of a soluble rigid tetrathienoacene are capable of forming stable p-dimer dications at ambient temperature when the short backbone becomes extended with conjugated thiophene-2-yl substituents in the a-positions. On the other hand, simple attachment of methyl groups on the a-carbon of the external thiophen-2-yl rings proved sufficient to inhibit the dimerization. Stable radical cationswere also exclusively formed for tetrathienoacene derivatives end-capped with bulky TIPS and phenyl substituents.
Resumo:
Protons and electrons are being exploited in different natural charge transfer processes. Both types of charge carriers could be, therefore, responsible for charge transport in biomimetic self-assembled peptide nanostructures. The relative contribution of each type of charge carrier is studied in the present work for fi brils self-assembled from amyloid- β derived peptide molecules, in which two non-natural thiophene-based amino acids are included. It is shown that under low humidity conditions both electrons and protons contribute to the conduction, with current ratio of 1:2 respectively, while at higher relative humidity proton transport dominates the conductance. This hybrid conduction behavior leads to a bimodal exponential dependence of the conductance on the relative humidity. Furthermore, in both cases the conductance is shown to be affected by the peptide folding state under the entire relative humidity range. This unique hybrid conductivity behavior makes self-assembled peptide nanostructures powerful building blocks for the construction of electric devices that could use either or both types of charge carriers for their function.