23 resultados para thermal-effect

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Starting from the classical Saltzman two-dimensional convection equations, we derive via a severe spectral truncation a minimal 10 ODE system which includes the thermal effect of viscous dissipation. Neglecting this process leads to a dynamical system which includes a decoupled generalized Lorenz system. The consideration of this process breaks an important symmetry and couples the dynamics of fast and slow variables, with the ensuing modifications to the structural properties of the attractor and of the spectral features. When the relevant nondimensional number (Eckert number Ec) is different from zero, an additional time scale of O(Ec−1) is introduced in the system, as shown with standard multiscale analysis and made clear by several numerical evidences. Moreover, the system is ergodic and hyperbolic, the slow variables feature long-term memory with 1/f3/2 power spectra, and the fast variables feature amplitude modulation. Increasing the strength of the thermal-viscous feedback has a stabilizing effect, as both the metric entropy and the Kaplan-Yorke attractor dimension decrease monotonically with Ec. The analyzed system features very rich dynamics: it overcomes some of the limitations of the Lorenz system and might have prototypical value in relevant processes in complex systems dynamics, such as the interaction between slow and fast variables, the presence of long-term memory, and the associated extreme value statistics. This analysis shows how neglecting the coupling of slow and fast variables only on the basis of scale analysis can be catastrophic. In fact, this leads to spurious invariances that affect essential dynamical properties (ergodicity, hyperbolicity) and that cause the model losing ability in describing intrinsically multiscale processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To study the thermal effects on airflow in a street canyon under real heating conditions (due to diurnal solar radiation), a one-way static approach combining an urban canopy model and CFD is proposed in this paper. An urban canopy model was developed to calculate the individual temperatures of surfaces in the street canyon. The calculated surface temperature may be used as a thermal boundary for CFD simulation. The reliability of this model was validated against a field experiment in Harbin, China. Using the coupling calculation method, the wind flow and air exchange process inside an idealized street canyon was studied. The simulation results show that the thermal effect has significant impacts on the transfer process in the street canyon, especially when the approaching wind is weak. Under a real diurnal thermal forcing, the flow structure within the street canyon changes from one primary vortex to two counter-rotating vortices. The change of transfer process, induced by the buoyancy force, was determined by the thermal condition of all surfaces rather than a single one. Key words: thermal effect, street canyon, numerical simulation, transfer process, diurnal heating.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reaction Injection Moulding (RIM) is a moulding technology used for the production of large size and complex plastic parts. The RIM process is characterized essentially by the injection of a highly reactive chemical system (usually polyurethane) and fast cure, in a mould properly closed and thermally controlled. Several studies show that rapid manufacturing moulds obtained in epoxy resins for Thermoplastic Injection Moulding (TIM) affect the moulding process and the final properties of parts. The cycle time and mechanical properties of final parts are reduced, due to a low thermal conductivity of epoxy materials. In contrast, the low conductivity of materials usually applied for the rapid manufacturing of RIM moulds, increase the mechanical properties of final injected parts and reduce the cycle time. This study shows the effect of the rapid manufacturing moulds material during the RIM process. Several materials have been tested for rapid manufacturing of RIM moulds and the analysis of both, temperature profile of moulded parts during injection and the cure data experimentally obtained in a mixing and reaction cell, allow to determine and model the real effect of the mould material on the RIM process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A suite of climate model experiments indicates that 20th Century increases in ocean heat content and sea-level ( via thermal expansion) were substantially reduced by the 1883 eruption of Krakatoa. The volcanically-induced cooling of the ocean surface is subducted into deeper ocean layers, where it persists for decades. Temporary reductions in ocean heat content associated with the comparable eruptions of El Chichon ( 1982) and Pinatubo ( 1991) were much shorter lived because they occurred relative to a non-stationary background of large, anthropogenically-forced ocean warming. Our results suggest that inclusion of the effects of Krakatoa ( and perhaps even earlier eruptions) is important for reliable simulation of 20th century ocean heat uptake and thermal expansion. Inter-model differences in the oceanic thermal response to Krakatoa are large and arise from differences in external forcing, model physics, and experimental design. Systematic experimentation is required to quantify the relative importance of these factors. The next generation of historical forcing experiments may require more careful treatment of pre-industrial volcanic aerosol loadings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The toughness of a polymer glass is determined by the interplay of yielding, strain softening, and strain hardening. Molecular-dynamics simulations of a typical polymer glass, atactic polystyrene, under the influence of active deformation have been carried out to enlighten these processes. It is observed that the dominant interaction for the yield peak is of interchain nature and for the strain hardening of intrachain nature. A connection is made with the microscopic cage-to-cage motion. It is found that the deformation does not lead to complete erasure of the thermal history but that differences persist at large length scales. Also we find that the strain-hardening modulus increases with increasing external pressure. This new observation cannot be explained by current theories such as the one based on the entanglement picture and the inclusion of this effect will lead to an improvement in constitutive modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models of snow processes in areas of possible large-scale change need to be site independent and physically based. Here, the accumulation and ablation of the seasonal snow cover beneath a fir canopy has been simulated with a new physically based snow-soil vegetation-atmosphere transfer scheme (Snow-SVAT) called SNOWCAN. The model was formulated by coupling a canopy optical and thermal radiation model to a physically based multilayer snow model. Simple representations of other forest effects were included. These include the reduction of wind speed and hence turbulent transfer beneath the canopy, sublimation of intercepted snow, and deposition of debris on the surface. This paper tests this new modeling approach fully at a fir site within Reynolds Creek Experimental Watershed, Idaho. Model parameters were determined at an open site and subsequently applied to the fir site. SNOWCAN was evaluated using measurements of snow depth, subcanopy solar and thermal radiation, and snowpack profiles of temperature, density, and grain size. Simulations showed good agreement with observations (e.g., fir site snow depth was estimated over the season with r(2) = 0.96), generally to within measurement error. However, the simulated temperature profiles were less accurate after a melt-freeze event, when the temperature discrepancy resulted from underestimation of the rate of liquid water flow and/or the rate of refreeze. This indicates both that the general modeling approach is applicable and that a still more complete representation of liquid water in the snowpack will be important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocomposites of high-density polyethylene (HDPE) and carbon nanotubes (CNT) of different geometries (single wall, double wall, and multiwall; SWNT, DWNT, and MWNT) were prepared by in situ polymerization of ethylene on CNT whose surface had been previously treated with a metallocene catalytic system. In this work, we have studied the effects of applying the successive self-nucleation and annealing thermal fractionation technique (SSA) to the nanocomposites and have also determined the influence of composition and type of CNT on the isothermal crystallization behavior of the HDPE. SSA results indicate that all types of CNT induce the formation of a population of thicker lamellar crystals that melt at higher temperatures as compared to the crystals formed in neat HDPE prepared under the same catalytic and polymerization conditions and subjected to the same SSA treatment. Furthermore, the peculiar morphology induced by the CNT on the HDPE matrix allows the resolution of thermal fractionation to be much better. The isothermal crystallization results indicated that the strong nucleation effect caused by CNT reduced the supercooling needed for crystallization. The interaction between the HDPE chains and the surface of the CNT is probably very strong as judged by the results obtained, even though it is only physical in nature. When the total crystallinity achieved during isothermal crystallization is considered as a function of CNT content, it was found that a competition between nucleation and topological confinement could account for the results. At low CNT content the crystallinity increases (because of the nucleating effect of CNT on HDPE), however, at higher CNT content there is a dramatic reduction in crystallinity reflecting the increased confinement experienced by the HDPE chains at the interfaces which are extremely large in these nanocomposites. Another consequence of these strong interactions is the remarkable decrease in Avrami index as CNT content increases. When the Avrami index reduces to I or lower, nucleation dominates the overall kinetics as a consequence of confinement effects. Wide-angle X-ray experiments were performed at a high-energy synchrotron source and demonstrated that no change in the orthorhombic unit cell of HDPE occurred during crystallization with or without CNT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combined mathematical model for predicting heat penetration and microbial inactivation in a solid body heated by conduction was tested experimentally by inoculating agar cylinders with Salmonella typhimurium or Enterococcus faecium and heating in a water bath. Regions of growth where bacteria had survived after heating were measured by image analysis and compared with model predictions. Visualisation of the regions of growth was improved by incorporating chromogenic metabolic indicators into the agar. Preliminary tests established that the model performed satisfactorily with both test organisms and with cylinders of different diameter. The model was then used in simulation studies in which the parameters D, z, inoculum size, cylinder diameter and heating temperature were systematically varied. These simulations showed that the biological variables D, z and inoculum size had a relatively small effect on the time needed to eliminate bacteria at the cylinder axis in comparison with the physical variables heating temperature and cylinder diameter, which had a much greater relative effect. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipid oxidation was studied in beef and chicken muscle after high pressure treatment (0.1-800 MPa) at different temperatures (20-70 degrees C for 20 min, prior to storage at 4 degrees C for 7 days. Pressure treatment of beef samples at room temperature led to increases in TBARS values after 7 days storage at 4 degrees C; however, the increases were more marked after treatment at pressures >= 400 MPa (at least fivefold) than after treatment at lower pressures (less than threefold). Similar results were found in those samples treated at 40 degrees C, but at 60 degrees C and 70 degrees C pressure had little additional effect on the oxidative stability of the muscle. Pressure treatments of 600 MPa and 800 MPa, at all temperatures. induced increased rates of lipid oxidation in chicken muscle, but, in general, chicken muscle was more stable than beef to pressure. and the catalytic effect of pressure was still seen at the higher temperatures of 50 degrees C, 60 degrees C and 70 degrees C. The addition of 1%, Na(2)EDTA decreased TBARS values of the beef muscle during storage and inhibited the increased rates of lipid oxidation induced by pressure. The inhibition by vitamin E (0.05% w/w) and BHT (0.02% w/w), either alone or in combination, were less marked than seen with Na(2)EDTA, suggesting that transition metal ions released from insoluble complexes are of major importance in catalysing lipid oxidation in pressure-treated muscle foods. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zn(CN)2 and Ni(CN)2 are known for exhibiting anomalous thermal expansion over a wide temperature range. The volume thermal expansion coefficient for the cubic, three dimensionally connected material, Zn(CN)2, is negative (alpha(V) = −51  10(-6) K-1) while for Ni(CN)2, a tetragonal material, the thermal expansion coefficient is negative in the two dimensionally connected sheets (alpha(a) = −7  10(-6) K-1), but the overall thermal expansion coefficient is positive (alpha(V) = 48  10(-6) K-1). We have measured the temperature dependence of phonon spectra in these compounds and analyzed them using ab initio calculations. The spectra of the two compounds show large differences that cannot be explained by simple mass renormalization of the modes involving Zn (65.38 amu) and Ni (58.69 amu) atoms. This reflects the fact that the structure and bonding are quite different in the two compounds. The calculated pressure dependence of the phonon modes and of the thermal expansion coefficient, alpha(V), are used to understand the anomalous behavior in these compounds. Our ab initio calculations indicate that phonon modes of energy approx. 2 meV are major contributors to negative thermal expansion (NTE) in both the compounds. The low-energy modes of approx.8 and 13 meV in Zn(CN)2 also contribute significantly to the NTE in Zn(CN)2 and Ni(CN)2, respectively. The measured temperature dependence of the phonon spectra has been used to estimate the total anharmonicity of both compounds. For Zn(CN)2, the temperature-dependent measurements (total anharmonicity), along with our previously reported pressure dependence of the phonon spectra (quasiharmonic), is used to separate the explicit temperature effect at constant volume (intrinsic anharmonicity).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal performance of a horizontal-coupled ground-source heat pump system has been assessed both experimentally and numerically in a UK climate. A numerical simulation of thermal behaviour of the horizontal-coupled heat exchanger for combinations of different ambient air temperatures, wind speeds, refrigerant temperature and soil thermal properties was studied using a validated 2D transient model. The specific heat extraction by the heat exchanger increased with ambient temperature and soil thermal conductivity, however it decreased with increasing refrigerant temperature. The effect of wind speed was negligible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Airflow through urban environments is one of the most important factors affecting human health, outdoor and indoor thermal comfort, air quality and the energy performance of buildings. This paper presents a study on the effects of wind induced airflows through urban built form using statistical analysis. The data employed in the analysis are from the year-long simultaneous field measurements conducted at the University of Reading campus in the United Kingdom. In this study, the association between typical architectural forms and the wind environment are investigated; such forms include: a street canyon, a semi-closure, a courtyard form and a relatively open space in a low-rise building complex. Measured data captures wind speed and wind direction at six representative locations and statistical analysis identifies key factors describing the effects of built form on the resulting airflows. Factor analysis of the measured data identified meteorological and architectural layout factors as key factors. The derivation of these factors and their variation with the studied built forms are presented in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of East Asian Summer Monsoon (EASM) precipitation to long term changes in regional anthropogenic aerosols (sulphate and black carbon) is explored in an atmospheric general circulation model, the atmospheric component of the UK High-Resolution Global Environment Model v1.2 (HiGAM). Separately, sulphur dioxide (SO2) and black carbon (BC) emissions in 1950 and 2000 over East Asia are used to drive model simulations, while emissions are kept constant at year 2000 level outside this region. The response of the EASM is examined by comparing simulations driven by aerosol emissions representative of 1950 and 2000. The aerosol radiative effects are also determined using an off-line radiative transfer model. During June, July and August, the EASM was not significantly changed as either SO2 or BC emissions increased from 1950 to 2000 levels. However, in September, precipitation is significantly decreased by 26.4% for sulphate aerosol and 14.6% for black carbon when emissions are at the 2000 level. Over 80% of the decrease is attributed to changes in convective precipitation. The cooler land surface temperature over China in September (0.8 °C for sulphate and 0.5 °C for black carbon) due to increased aerosols reduces the surface thermal contrast that supports the EASM circulation. However, mechanisms causing the surface temperature decrease in September are different between sulphate and BC experiments. In the sulphate experiment, the sulphate direct and the 1st indirect radiative effects contribute to the surface cooling. In the BC experiment, the BC direct effect is the main driver of the surface cooling, however, a decrease in low cloud cover due to the increased heating by BC absorption partially counteracts the direct effect. This results in a weaker land surface temperature response to BC changes than to sulphate changes. The resulting precipitation response is also weaker, and the responses of the monsoon circulation are different for sulphate and black carbon experiments. This study demonstrates a mechanism that links regional aerosol emission changes to the precipitation changes of the EASM, and it could be applied to help understand the future changes in EASM precipitation in CMIP5 simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents results obtained from a numerical simulation for the horizontal slinky-loop heat exchanger of a ground-source heat pump system. A three-dimensional numerical model was developed and the results of the thermal performance of various heat exchanger configurations are presented. The investigation was carried out on five types of loop pitch (loop spacing), three types of loop diameter, three values of soil thermal properties, and allowing continuous and intermittent operation. Comparison was made for the heat transfer rate, the amount of pipe material needed, as well as excavation work required for the horizontal slinky-loop heat exchanger. The results indicate that system parameters have a significant effect on the thermal performance of the system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

he classical problem of the response of a balanced, axisymmetric vortex to thermal and mechanical forcing is re-examined, paying special attention to the lower boundary condition. The correct condition is DΦ/Dt = 0, where Φ is the geopotential and D/Dt the material derivative, which explicitly accounts for a mass redistribution as part of the mean-flow response. This redistribution is neglected when using the boundary condition Dp/Dt = 0, which has conventionally been applied in this problem. It is shown that applying the incorrect boundary condition, and thereby ignoring the surface pressure change, leads to a zonal wind acceleration δū/δt that is too strong, especially near the surface. The effect is significant for planetary-scale forcing even when applied at tropopause level. A comparison is made between the mean-flow evolution in a baroclinic life-cycle, as simulated in a fully nonlinear, primitive-equation model, and that predicted by using the simulated eddy fluxes in the zonally-symmetric response problem. Use of the correct lower boundary condition is shown to lead to improved agreement.