2 resultados para thermal clothing
em CentAUR: Central Archive University of Reading - UK
Resumo:
A year-long field study of the thermal environment in university classrooms was conducted from March 2005 to May 2006 in Chongqing, China. This paper presents the occupants’ thermal sensation votes and discusses the occupants’ adaptive response and perception of the thermal environment in a naturally conditioned space. Comparisons between the Actual Mean Vote (AMV) and Predicted Mean Vote (PMV) have been made as well as between the Actual Percentage of Dissatisfied (APD) and Predicted Percentage of Dissatisfied (PPD). The adaptive thermal comfort zone for the naturally conditioned space for Chongqing, which has hot summer and cold winter climatic characteristics, has been proposed based on the field study results. The Chongqing adaptive comfort range is broader than that of the ASHRAE Standard 55-2004 in general, but in the extreme cold and hot months, it is narrower. The thermal conditions in classrooms in Chongqing in summer and winter are severe. Behavioural adaptation such as changing clothing, adjusting indoor air velocity, taking hot/cold drinks, etc., as well as psychological adaptation, has played a role in adapting to the thermal environment.
Resumo:
Although over a hundred thermal indices can be used for assessing thermal health hazards, many ignore the human heat budget, physiology and clothing. The Universal Thermal Climate Index (UTCI) addresses these shortcomings by using an advanced thermo-physiological model. This paper assesses the potential of using the UTCI for forecasting thermal health hazards. Traditionally, such hazard forecasting has had two further limitations: it has been narrowly focused on a particular region or nation and has relied on the use of single ‘deterministic’ forecasts. Here, the UTCI is computed on a global scale,which is essential for international health-hazard warnings and disaster preparedness, and it is provided as a probabilistic forecast. It is shown that probabilistic UTCI forecasts are superior in skill to deterministic forecasts and that despite global variations, the UTCI forecast is skilful for lead times up to 10 days. The paper also demonstrates the utility of probabilistic UTCI forecasts on the example of the 2010 heat wave in Russia.