23 resultados para theory building
em CentAUR: Central Archive University of Reading - UK
Resumo:
In 'Avalanche', an object is lowered, players staying in contact throughout. Normally the task is easily accomplished. However, with larger groups counter-intuitive behaviours appear. The paper proposes a formal theory for the underlying causal mechanisms. The aim is to not only provide an explicit, testable hypothesis for the source of the observed modes of behaviour-but also to exemplify the contribution that formal theory building can make to understanding complex social phenomena. Mapping reveals the importance of geometry to the Avalanche game; each player has a pair of balancing loops, one involved in lowering the object, the other ensuring contact. For more players, sets of balancing loops interact and these can allow dominance by reinforcing loops, causing the system to chase upwards towards an ever-increasing goal. However, a series of other effects concerning human physiology and behaviour (HPB) is posited as playing a role. The hypothesis is therefore rigorously tested using simulation. For simplicity a 'One Degree of Freedom' case is examined, allowing all of the effects to be included whilst rendering the analysis more transparent. Formulation and experimentation with the model gives insight into the behaviours. Multi-dimensional rate/level analysis indicates that there is only a narrow region in which the system is able to move downwards. Model runs reproduce the single 'desired' mode of behaviour and all three of the observed 'problematic' ones. Sensitivity analysis gives further insight into the system's modes and their causes. Behaviour is seen to arise only when the geometric effects apply (number of players greater than degrees of freedom of object) in combination with a range of HPB effects. An analogy exists between the co-operative behaviour required here and various examples: conflicting strategic objectives in organizations; Prisoners' Dilemma and integrated bargaining situations. Additionally, the game may be relatable in more direct algebraic terms to situations involving companies in which the resulting behaviours are mediated by market regulations. Finally, comment is offered on the inadequacy of some forms of theory building and the case is made for formal theory building involving the use of models, analysis and plausible explanations to create deep understanding of social phenomena.
Resumo:
The article discusses various reports published within the issue, including the articles "Closing the Loop: Promoting Synergies with other Theory Building Approaches to Improve System Dynamics Practice," by Birgit Kopainsky and Luis Luna-Reyes, and "On improving dynamic decision-making: Implications from multiple-process cognitive theory," by Bent Bakken.
Resumo:
The role of the academic in the built environment seems generally to be not well understood or articulated. While this problem is not unique to our field, there are plenty of examples in a wide range of academic disciplines where the academic role has been fully articulated. But built environment academics have tended not to look beyond their own literature and their own vocational context in trying to give meaning to their academic work. The purpose of this keynote presentation is to explore the context of academic work generally and the connections between education, research and practice in the built environment, specifically. By drawing on ideas from the sociology of the professions, the role of universities, and the fundamentals of social science research, a case is made that helps to explain the kind of problems that routinely obstruct academic progress in our field. This discussion reveals that while there are likely to be great weaknesses in much of what is published and taught in the built environment, it is not too great a stretch to provide a more robust understanding and a good basis for developing our field in a way that would enable us collectively to make a major contribution to theory-building, theory-testing and to make a good stab at tackling some of the problems facing society at large. There is no reason to disregard the fundamental academic disciplines that underpin our knowledge of the built environment. If we contextualise our work in these more fundamental disciplines, there is every reason to think that we can have a much greater impact that we have experienced to date.
Resumo:
The past decade has witnessed a sharp increase in published research on energy and buildings. This paper takes stock of work in this area, with a particular focus on construction research and the analysis of non-technical dimensions. While there is widespread recognition as to the importance of non-technical dimensions, research tends to be limited to individualistic studies of occupants and occupant behavior. In contrast, publications in the mainstream social science literature display a broader range of interests, including policy developments, structural constraints on the diffusion and use of new technologies and the construction process itself. The growing interest of more generalist scholars in energy and buildings provides an opportunity for construction research to engage a wider audience. This would enrich the current research agenda, helping to address unanswered problems concerning the relatively weak impact of policy mechanisms and new technologies and the seeming recalcitrance of occupants. It would also help to promote the academic status of construction research as a field. This, in turn, depends on greater engagement with interpretivist types of analysis and theory building, thereby challenging deeply ingrained views on the nature and role of academic research in construction.
Resumo:
This paper proposes a limitation to epistemological claims to theory building prevalent in critical realist research. While accepting the basic ontological and epistemological positions of the perspective as developed by Roy Bhaskar, it is argued that application in social science has relied on sociological concepts to explain the underlying generative mechanisms, and that in many cases this has been subject to the effects of an anthropocentric constraint. A novel contribution to critical realist research comes from the work and ideas of Gregory Bateson. This is in service of two central goals of critical realism, namely an abductive route to theory building and a commitment to interdisciplinarity. Five aspects of Bateson’s epistemology are introduced: (1) difference, (2) logical levels of abstraction, (3) recursive causal loops, (4) the logic of metaphor, and (5) Bateson’s theory of mind. The comparison between Bateson and Bhaskar’s ideas is seen as a form of double description, illustrative of the point being raised. The paper concludes with an appeal to critical realists to start exploring the writing and outlook of Bateson himself.
Resumo:
Purpose – The purpose of this paper is twofold: first, to provide a critical assessment of the literature on business incubation effectiveness and second, to submit a situated theoretical perspective on how business incubation management can provide an environment that supports the development of incubatee entrepreneurs and their businesses. Design/methodology/approach – The paper provides a narrative critical assessment of the literature on business incubation effectiveness. Definitional issues, performance aspects and approaches to establishing critical success factors in business incubation are discussed. Business incubation management is identified as an overarching factor for theorising on business incubation effectiveness. Findings – The literature on business incubation effectiveness suffers from several deficiencies, including definitional incongruence, descriptive accounts, fragmentation and lack of strong conceptual grounding. Notwithstanding the growth of research on this domain, understanding of how entrepreneurs and their businesses develop within the business incubator environment remains limited. Given the importance of relational, intangible factors in business incubation and the critical role of business incubation management in orchestrating and optimising such factors, it is suggested that theorising efforts would benefit from a situated perspective. Originality/value – The identification of specific shortcomings in the literature on business incubation highlights the need for more systematic efforts towards theory building. It is suggested that focusing on the role of business incubation management from a situated learning theory perspective can lend itself to a more profound understanding of the development process of incubatee entrepreneurs and their firms. Theoretical propositions are offered to this effect, as well as avenues for future research.
Resumo:
Aims: Over the past decade in particular, formal linguistic work within L3 acquisition has concentrated on hypothesizing and empirically determining the source of transfer from previous languages—L1, L2 or both—in L3 grammatical representations. In view of the progressive concern with more advanced stages, we aim to show that focusing on L3 initial stages should be one continued priority of the field, even—or especially—if the field is ready to shift towards modeling L3 development and ultimate attainment. Approach: We argue that L3 learnability is significantly impacted by initial stages transfer, as such forms the basis of the initial L3 interlanguage. To illustrate our point, the insights from studies using initial and intermediary stages L3 data are discussed in light of developmental predictions that derive from the initial stages models. Conclusions: Despite a shared desire to understand the process of L3 acquisition in whole, inclusive of offering developmental L3 theories, we argue that the field does not yet have—although is ever closer to—the data basis needed to effectively do so. Originality: This article seeks to convince the readership for the need of conservatism in L3 acquisition theory building, whereby offering a framework on how and why we can most effectively build on the accumulated knowledge of the L3 initial stages in order to make significant, steady progress. Significance: The arguments exposed here are meant to provide an epistemological base for a tenable framework of formal approaches to L3 interlanguage development and, eventually, ultimate attainment.
Resumo:
Building services are worth about 2% GDP and are essential for the effective and efficient operations of the building. It is increasingly recognised that the value of a building is related to the way it supports the client organisation’s ongoing business operations. Building services are central to the functional performance of buildings and provide the necessary conditions for health, well-being, safety and security of the occupants. They frequently comprise several technologically distinct sub-systems and their design and construction requires the involvement of numerous disciplines and trades. Designers and contractors working on the same project are frequently employed by different companies. Materials and equipment is supplied by a diverse range of manufacturers. Facilities managers are responsible for operation of the building service in use. The coordination between these participants is crucially important to achieve optimum performance, but too often is neglected. This leaves room for serious faults. The need for effective integration is important. Modern technology offers increasing opportunities for integrated personal-control systems for lighting, ventilation and security as well as interoperability between systems. Opportunities for a new mode of systems integration are provided by the emergence of PFI/PPP procurements frameworks. This paper attempts to establish how systems integration can be achieved in the process of designing, constructing and operating building services. The essence of the paper therefore is to envisage the emergent organisational responses to the realisation of building services as an interactive systems network.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasingly complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I) reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develops conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to building simulation scientists, initiates a dialogue and builds bridges between scientists and engineers, and stimulates future research about a wide range of issues on building environmental systems.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasing complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I), published in the previous issue, reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develop conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to (1) building simulation scientists and designers (2) initiating a dialogue between scientists and engineers, and (3) stimulating future research on a wide range of issues involved in designing and managing building environmental systems.
Resumo:
The assessment of building energy efficiency is one of the most effective measures for reducing building energy consumption. This paper proposes a holistic method (HMEEB) for assessing and certifying building energy efficiency based on the D-S (Dempster-Shafer) theory of evidence and the Evidential Reasoning (ER) approach. HMEEB has three main features: (i) it provides both a method to assess and certify building energy efficiency, and exists as an analytical tool to identify improvement opportunities; (ii) it combines a wealth of information on building energy efficiency assessment, including identification of indicators and a weighting mechanism; and (iii) it provides a method to identify and deal with inherent uncertainties within the assessment procedure. This paper demonstrates the robustness, flexibility and effectiveness of the proposed method, using two examples to assess the energy efficiency of two residential buildings, both located in the ‘Hot Summer and Cold Winter’ zone in China. The proposed certification method provides detailed recommendations for policymakers in the context of carbon emission reduction targets and promoting energy efficiency in the built environment. The method is transferable to other countries and regions, using an indicator weighting system to modify local climatic, economic and social factors.
Resumo:
The principles of organization theory are applied to the organization of construction projects. This is done by proposing a framework for modelling the whole process of building procurement. This consists of a framework for describing the environments within which construction projects take place. This is followed by the development of a series of hypotheses about the organizational structure of construction projects. Four case studies are undertaken, and the extent to which their organizational structure matches the model is compared to the level of success achieved by each project. To this end there is a systematic method for evaluating the success of building project organizations, because any conclusions about the adequacy of a particular organization must be related to the degree of success achieved by that organization. In order to test these hypotheses, a mapping technique is developed. The technique offered is a development of a technique known as Linear Responsibility Analysis, and is called "3R analysis" as it deals with roles, responsibilities and relationships. The analysis of the case studies shows that they tended to suffer due to inappropriate organizational structure. One of the prevailing problems of public sector organization is that organizational structures are inadequately defined, and too cumbersome to respond to environmental demands on the project. The projects tended to be organized as rigid hierarchies, particularly at decision points, when what was required was a more flexible, dynamic and responsive organization. The study concludes with a series of recommendations; including suggestions for increasing the responsiveness of construction project organizations, and reducing the lead-in times for the inception periods.
Resumo:
Flow and turbulence above urban terrain is more complex than above rural terrain, due to the different momentum and heat transfer characteristics that are affected by the presence of buildings (e.g. pressure variations around buildings). The applicability of similarity theory (as developed over rural terrain) is tested using observations of flow from a sonic anemometer located at 190.3 m height in London, U.K. using about 6500 h of data. Turbulence statistics—dimensionless wind speed and temperature, standard deviations and correlation coefficients for momentum and heat transfer—were analysed in three ways. First, turbulence statistics were plotted as a function only of a local stability parameter z/Λ (where Λ is the local Obukhov length and z is the height above ground); the σ_i/u_* values (i = u, v, w) for neutral conditions are 2.3, 1.85 and 1.35 respectively, similar to canonical values. Second, analysis of urban mixed-layer formulations during daytime convective conditions over London was undertaken, showing that atmospheric turbulence at high altitude over large cities might not behave dissimilarly from that over rural terrain. Third, correlation coefficients for heat and momentum were analyzed with respect to local stability. The results give confidence in using the framework of local similarity for turbulence measured over London, and perhaps other cities. However, the following caveats for our data are worth noting: (i) the terrain is reasonably flat, (ii) building heights vary little over a large area, and (iii) the sensor height is above the mean roughness sublayer depth.
Resumo:
Mathematical models have been vitally important in the development of technologies in building engineering. A literature review identifies that linear models are the most widely used building simulation models. The advent of intelligent buildings has added new challenges in the application of the existing models as an intelligent building requires learning and self-adjusting capabilities based on environmental and occupants' factors. It is therefore argued that the linearity is an impropriate basis for any model of either complex building systems or occupant behaviours for control or whatever purpose. Chaos and complexity theory reflects nonlinear dynamic properties of the intelligent systems excised by occupants and environment and has been used widely in modelling various engineering, natural and social systems. It is proposed that chaos and complexity theory be applied to study intelligent buildings. This paper gives a brief description of chaos and complexity theory and presents its current positioning, recent developments in building engineering research and future potential applications to intelligent building studies, which provides a bridge between chaos and complexity theory and intelligent building research.