4 resultados para termites
em CentAUR: Central Archive University of Reading - UK
Resumo:
The taxonomic status of Coptotermes gestroi (Wasmann), C. havilandi Holmgren, C. travians (Haviland) and C. borneensis Oshima (Isoptera: Rhinotermitidae) is revised. The apparent discrepancy between the reported importance of C. havitandi in countries to which it has been introduced and the region from which it originated is shown to be due to misidentification and taxonomic confusion between C. travians, C. havilandi and C. gestroi. Based on an examination of specimens from Southeast Asia, two species are recognized, namely C. gestroi and C. travians. Coptotermes havilandi, described from imagos, is shown to be the same species as C. gestro described earlier from the soldier caste, and is designated a junior synonym. Coptotermes gestroi occurs from Assam through Burma and Thailand to Malaysia and the Indonesian archipelago, and has been introduced into other geographic regions, including parts of North and South America and the Caribbean. It is frequently found damaging wood in buildings, and is often intercepted outside its range in cargo onboard ships and sailing vessels, which is a likely mechanism for its spread to new geographical areas. Coptotermes gestroi has been misidentified in much literature as C. travians. Conversely, C. travians has been misidentified in recent literature in Peninsular Malaysia as C. havilandi and was redescribed from Borneo as C. borneensis, which is here designated a junior synonym of C. travians. It has a known distribution from Peninsular Malaysia to Borneo, and has not been found infesting wood in buildings. It is envisaged that the resolution of this taxonomic problem will enable the deployment of common pest management strategies for C. gestro the primary pest species of Coptotermes originating from Southeast Asia.
Resumo:
Termites are an important component of tropical soil communities and have a significant affect on the structure and nutrient content of soil. Digestion in termites is related to gut structure, gut physico-chemical conditions and gut symbiotic microbiota. Here we describe the use of 16S rRNA gene sequencing and Terminal-restriction Fragment Length Polymorphism (T-RFLP) analysis to examine methanogenic Archaea (MA) in the guts and food-soil of the soil-feeder Cubitermes fungifaber Sjostedt across a range of soil types. If they are strictly vertically inherited, then MA in guts should be the same in all individuals even if the soils differ across sites. In contrast, gut MA should reflect what is present in soil if populations are merely a reflection of what is ingested as the insects forage. We show clear differences between the euryarchaeal communities in termite guts and in food-soils from five different sites. Analysis of 16S rRNA gene clones indicated little overlap between the gut and soil communities. Gut clones were related to a termite-derived Methanomicrobiales cluster, to Methanobrevibacter and, surprisingly, to the haloalkaliphile Natronococcus. Soil clones clustered with Methanosarcina, Methanomicrococcus or Rice Cluster I. T-RFLP analysis indicated that the archaeal communities in the soil samples differed from site to site, whereas those in termite guts were similar between sites. There was some overlap between the gut and soil communities but these may represent transient populations in either guts or soil. Our data does not support the hypothesis that termite gut MA are derived from their food soil but also does not support a purely vertical transmission of gut microflora.
Resumo:
Termites are an important component of tropical soil communities and have a significant effect on the structure and nutrient content of soil. Digestion in termites is related to gut structure, gut physicochemical conditions, and gut symbiotic microbiota. Here we describe the use of 16S rRNA gene sequencing and terminal-restriction fragment length polymorphism (T-RFLP) analysis to examine methanogenic archaea (MA) in the guts and food-soil of the soil-feeder Cubitermes fungifaber Sjostedt across a range of soil types. If these MA are strictly vertically inherited, then the MA in guts should be the same in all individuals even if the soils differ across sites. In contrast, gut MA should reflect what is present in soil if populations are merely a reflection of what is ingested as the insects forage. We show clear differences between the euryarchaeal communities in termite guts and in food-soils from five different sites. Analysis of 16S rRNA gene clones indicated little overlap between the gut and soil communities. Gut clones were related to a termite-derived Methanomicrobiales cluster, to Methanobrevibacter and, surprisingly, to the haloalkaliphile Natronococcus. Soil clones clustered with Methanosarcina, Methanomicrococcus, or rice cluster I. T-RFLP analysis indicated that the archaeal communities in the soil samples differed from site to site, whereas those in termite guts were similar between sites. There was some overlap between the gut and soil communities, but these may represent transient populations in either guts or soil. Our data do not support the hypothesis that termite gut MA are derived from their food-soil but also do not support a purely vertical transmission of gut microflora.