8 resultados para take over deterrent
em CentAUR: Central Archive University of Reading - UK
Resumo:
This thesis is aimed to initiate implementing sustainable building construction in the kingdom of Bahrain, i.e. Building-Integration PhotoVoltaic (BIPV) or Wind Energy (BIWE). It highlights the main constrains that discourage such modern concept in building and construction. Three groups have been questioned using a questionnaire. These are the policy and decision makers, the leading consultants and the contractors. The main constrains of the dissemination of BIVP and BIWE, according to the policy and decision makers, are: lack of knowledge and awareness of the public in sustainable technology, low cost of electricity, low cost of gas and oil and difficulty in applying local environmental taxes. The consultants had attributed the constrains to ignorance of life cycle cost of PV and Wind turbines systems, lack of education and knowledge in sustainable design, political system, shortage of markets importing sustainable technologies and client worries in profitability and pay-back period. The contractors are found to be very enthusiastic and ready to take over any sustainable building project and prefer to have a construction manger to coordinate between the design and contracting team. Design and Build is found the favorable procurement method in Bahrain for conducting BIPV or BIWE projects.
Resumo:
The usefulness of any simulation of atmospheric tracers using low-resolution winds relies on both the dominance of large spatial scales in the strain and time dependence that results in a cascade in tracer scales. Here, a quantitative study on the accuracy of such tracer studies is made using the contour advection technique. It is shown that, although contour stretching rates are very insensitive to the spatial truncation of the wind field, the displacement errors in filament position are sensitive. A knowledge of displacement characteristics is essential if Lagrangian simulations are to be used for the inference of airmass origin. A quantitative lower estimate is obtained for the tracer scale factor (TSF): the ratio of the smallest resolved scale in the advecting wind field to the smallest “trustworthy” scale in the tracer field. For a baroclinic wave life cycle the TSF = 6.1 ± 0.3 while for the Northern Hemisphere wintertime lower stratosphere the TSF = 5.5 ± 0.5, when using the most stringent definition of the trustworthy scale. The similarity in the TSF for the two flows is striking and an explanation is discussed in terms of the activity of potential vorticity (PV) filaments. Uncertainty in contour initialization is investigated for the stratospheric case. The effect of smoothing initial contours is to introduce a spinup time, after which wind field truncation errors take over from initialization errors (2–3 days). It is also shown that false detail from the proliferation of finescale filaments limits the useful lifetime of such contour advection simulations to 3σ−1 days, where σ is the filament thinning rate, unless filaments narrower than the trustworthy scale are removed by contour surgery. In addition, PV analysis error and diabatic effects are so strong that only PV filaments wider than 50 km are at all believable, even for very high-resolution winds. The minimum wind field resolution required to accurately simulate filaments down to the erosion scale in the stratosphere (given an initial contour) is estimated and the implications for the modeling of atmospheric chemistry are briefly discussed.
Resumo:
Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double-membrane vesicles have been well characterized, the mechanism behind their formation remains unclear, including which viral proteins are responsible. Here, we use transfection of plasmid constructs encoding full-length versions of the three transmembrane-containing nonstructural proteins (nsps) of the severe acute respiratory syndrome (SARS) coronavirus to examine the ability of each to induce double-membrane vesicles in tissue culture. nsp3 has membrane disordering and proliferation ability, both in its full-length form and in a C-terminal-truncated form. nsp3 and nsp4 working together have the ability to pair membranes. nsp6 has membrane proliferation ability as well, inducing perinuclear vesicles localized around the microtubule organizing center. Together, nsp3, nsp4, and nsp6 have the ability to induce double-membrane vesicles that are similar to those observed in SARS coronavirus-infected cells. This activity appears to require the full-length form of nsp3 for action, as double-membrane vesicles were not seen in cells coexpressing the C-terminal truncation nsp3 with nsp4 and nsp6. IMPORTANCE Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well.
Resumo:
Objectives: To investigate people's views about the efficacy and specific risks of herbal, over-the-counter (OTC) conventional, and prescribed conventional medicines, and their likelihood of taking a second (herbal or OTC conventional) product in addition to a prescribed medicine. Methods: Experiment 1 (1 factor within-participant design); Experiment 2 (1 factor between-participant design). Convenience samples of general population were given a hypothetical scenario and required to make a number of judgements. Results: People believed herbal remedies to be less effective, but less risky than OTC and prescribed conventional medicines. Herbal medicines were not seen as being safer simply because of their easier availability. Participants indicated that they would be more likely to take a herbal medicine than a conventional OTC medicine in addition to a prescribed medicine, and less likely to consult their doctor in advance. Conclusion: People believe that herbal medicines are natural and relatively safe and can be used with less caution. People need to be given clear information about the risks and benefits of herbal medicines if they are to use such products safety and effectively. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A study examined people's interpretation of European Commission (EC) recommended verbal descriptors for risk of medicine side effects, and actions to take if they do occur. Members of the general public were presented with a fictitious (but realistic) scenario about suffering from a stiff neck, visiting the local pharmacy and purchasing an over the counter (OTC) medicine (Ibruprofen). The medicine came with an information leaflet which included information about the medicine's side effects, their risk of occurrence, and recommended actions to take if adverse effects are experienced. Probability of occurrence was presented numerically (6%) or verbally, using the recommended EC descriptor (common). Results showed that, in line with findings of our earlier work with prescribed medicines, participants significantly overestimated side effect risk. Furthermore, the differences in interpretation were reflected in their judgements of satisfaction, side effect severity, risk to health, and intention to take the medicine. Finally, we observed no significant difference between people's interpretation of the recommended action descriptors ('immediately' and 'as soon as possible'). (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Urban boundary layers (UBLs) can be highly complex due to the heterogeneous roughness and heating of the surface, particularly at night. Due to a general lack of observations, it is not clear whether canonical models of boundary layer mixing are appropriate in modelling air quality in urban areas. This paper reports Doppler lidar observations of turbulence profiles in the centre of London, UK, as part of the second REPARTEE campaign in autumn 2007. Lidar-measured standard deviation of vertical velocity averaged over 30 min intervals generally compared well with in situ sonic anemometer measurements at 190 m on the BT telecommunications Tower. During calm, nocturnal periods, the lidar underestimated turbulent mixing due mainly to limited sampling rate. Mixing height derived from the turbulence, and aerosol layer height from the backscatter profiles, showed similar diurnal cycles ranging from c. 300 to 800 m, increasing to c. 200 to 850 m under clear skies. The aerosol layer height was sometimes significantly different to the mixing height, particularly at night under clear skies. For convective and neutral cases, the scaled turbulence profiles resembled canonical results; this was less clear for the stable case. Lidar observations clearly showed enhanced mixing beneath stratocumulus clouds reaching down on occasion to approximately half daytime boundary layer depth. On one occasion the nocturnal turbulent structure was consistent with a nocturnal jet, suggesting a stable layer. Given the general agreement between observations and canonical turbulence profiles, mixing timescales were calculated for passive scalars released at street level to reach the BT Tower using existing models of turbulent mixing. It was estimated to take c. 10 min to diffuse up to 190 m, rising to between 20 and 50 min at night, depending on stability. Determination of mixing timescales is important when comparing to physico-chemical processes acting on pollutant species measured simultaneously at both the ground and at the BT Tower during the campaign. From the 3 week autumnal data-set there is evidence for occasional stable layers in central London, effectively decoupling surface emissions from air aloft.
Resumo:
The complaints on the adoption of Arabic by the Copts that are voiced by the Apocalypse of Pseudo-Samuel have often been quoted as the expiring words of the dying Coptic language. This article seeks to show that they are not to be taken so literally, and that they should rather be inserted in the context of a rift within the medieval Coptic church over the question of language choice, and beyond this, over that of accommodation with the Muslims. The use of Arabic by the episcopal church of Miṣr and by some prominent figures around it, which was linked to their proximity to the Fatimid court, was resented and denounced by more traditional circles, centred on the Patriarchate and on some important monasteries such as the one at Qalamūn where the Apocalypse was written. The suggestion is also made that the text is contemporary with the beginning of Coptic literary production in Arabic and with the introduction of Egyptian Christians at the caliphal court, namely in the last quarter of the tenth century, at the time of Severus ibn al-Muqqafa‘.
Resumo:
A statistical-dynamical downscaling method is used to estimate future changes of wind energy output (Eout) of a benchmark wind turbine across Europe at the regional scale. With this aim, 22 global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble are considered. The downscaling method uses circulation weather types and regional climate modelling with the COSMO-CLM model. Future projections are computed for two time periods (2021–2060 and 2061–2100) following two scenarios (RCP4.5 and RCP8.5). The CMIP5 ensemble mean response reveals a more likely than not increase of mean annual Eout over Northern and Central Europe and a likely decrease over Southern Europe. There is some uncertainty with respect to the magnitude and the sign of the changes. Higher robustness in future changes is observed for specific seasons. Except from the Mediterranean area, an ensemble mean increase of Eout is simulated for winter and a decreasing for the summer season, resulting in a strong increase of the intra-annual variability for most of Europe. The latter is, in particular, probable during the second half of the 21st century under the RCP8.5 scenario. In general, signals are stronger for 2061–2100 compared to 2021–2060 and for RCP8.5 compared to RCP4.5. Regarding changes of the inter-annual variability of Eout for Central Europe, the future projections strongly vary between individual models and also between future periods and scenarios within single models. This study showed for an ensemble of 22 CMIP5 models that changes in the wind energy potentials over Europe may take place in future decades. However, due to the uncertainties detected in this research, further investigations with multi-model ensembles are needed to provide a better quantification and understanding of the future changes.