80 resultados para system parameter identification
em CentAUR: Central Archive University of Reading - UK
Resumo:
We discuss the feasibility of wireless terahertz communications links deployed in a metropolitan area and model the large-scale fading of such channels. The model takes into account reception through direct line of sight, ground and wall reflection, as well as diffraction around a corner. The movement of the receiver is modeled by an autonomous dynamic linear system in state space, whereas the geometric relations involved in the attenuation and multipath propagation of the electric field are described by a static nonlinear mapping. A subspace algorithm in conjunction with polynomial regression is used to identify a single-output Wiener model from time-domain measurements of the field intensity when the receiver motion is simulated using a constant angular speed and an exponentially decaying radius. The identification procedure is validated by using the model to perform q-step ahead predictions. The sensitivity of the algorithm to small-scale fading, detector noise, and atmospheric changes are discussed. The performance of the algorithm is tested in the diffraction zone assuming a range of emitter frequencies (2, 38, 60, 100, 140, and 400 GHz). Extensions of the simulation results to situations where a more complicated trajectory describes the motion of the receiver are also implemented, providing information on the performance of the algorithm under a worst case scenario. Finally, a sensitivity analysis to model parameters for the identified Wiener system is proposed.
Resumo:
Little has been reported on the performance of near-far resistant CDMA detectors in the presence of system parameter estimation errors (SPEEs). Starting with the general mathematical model of matched filters, the paper examines the effects of three classes of SPEEs, i.e., time-delay, carrier phase, and carrier frequency errors, on the performance (BER) of an emerging type of near-far resistant coherent DS/SSMA detector, i.e., the linear decorrelating detector. For comparison, the corresponding results for the conventional detector are also presented. It is shown that the linear decorrelating detector can still maintain a considerable performance advantage over the conventional detector even when some SPEEs exist.
Resumo:
The large scale fading of wireless mobile communications links is modelled assuming the mobile receiver motion is described by a dynamic linear system in state-space. The geometric relations involved in the attenuation and multi-path propagation of the electric field are described by a static non-linear mapping. A Wiener system subspace identification algorithm in conjunction with polynomial regression is used to identify a model from time-domain estimates of the field intensity assuming a multitude of emitters and an antenna array at the receiver end.
Resumo:
The identification of non-linear systems using only observed finite datasets has become a mature research area over the last two decades. A class of linear-in-the-parameter models with universal approximation capabilities have been intensively studied and widely used due to the availability of many linear-learning algorithms and their inherent convergence conditions. This article presents a systematic overview of basic research on model selection approaches for linear-in-the-parameter models. One of the fundamental problems in non-linear system identification is to find the minimal model with the best model generalisation performance from observational data only. The important concepts in achieving good model generalisation used in various non-linear system-identification algorithms are first reviewed, including Bayesian parameter regularisation and models selective criteria based on the cross validation and experimental design. A significant advance in machine learning has been the development of the support vector machine as a means for identifying kernel models based on the structural risk minimisation principle. The developments on the convex optimisation-based model construction algorithms including the support vector regression algorithms are outlined. Input selection algorithms and on-line system identification algorithms are also included in this review. Finally, some industrial applications of non-linear models are discussed.
Resumo:
The recursive least-squares algorithm with a forgetting factor has been extensively applied and studied for the on-line parameter estimation of linear dynamic systems. This paper explores the use of genetic algorithms to improve the performance of the recursive least-squares algorithm in the parameter estimation of time-varying systems. Simulation results show that the hybrid recursive algorithm (GARLS), combining recursive least-squares with genetic algorithms, can achieve better results than the standard recursive least-squares algorithm using only a forgetting factor.
Resumo:
A novel partitioned least squares (PLS) algorithm is presented, in which estimates from several simple system models are combined by means of a Bayesian methodology of pooling partial knowledge. The method has the added advantage that, when the simple models are of a similar structure, it lends itself directly to parallel processing procedures, thereby speeding up the entire parameter estimation process by several factors.
Resumo:
A simple and effective algorithm is introduced for the system identification of Wiener system based on the observational input/output data. The B-spline neural network is used to approximate the nonlinear static function in the Wiener system. We incorporate the Gauss-Newton algorithm with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialization scheme. The efficacy of the proposed approach is demonstrated using an illustrative example.
Resumo:
In this article a simple and effective algorithm is introduced for the system identification of the Wiener system using observational input/output data. The nonlinear static function in the Wiener system is modelled using a B-spline neural network. The Gauss–Newton algorithm is combined with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialisation scheme. Numerical examples are utilised to demonstrate the efficacy of the proposed approach.
Resumo:
Asynchronous Optical Sampling (ASOPS) [1,2] and frequency comb spectrometry [3] based on dual Ti:saphire resonators operated in a master/slave mode have the potential to improve signal to noise ratio in THz transient and IR sperctrometry. The multimode Brownian oscillator time-domain response function described by state-space models is a mathematically robust framework that can be used to describe the dispersive phenomena governed by Lorentzian, Debye and Drude responses. In addition, the optical properties of an arbitrary medium can be expressed as a linear combination of simple multimode Brownian oscillator functions. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing the recorded THz transients in the time or frequency domain will be outlined [4,5]. Since a femtosecond duration pulse is capable of persistent excitation of the medium within which it propagates, such approach is perfectly justifiable. Several de-noising routines based on system identification will be shown. Furthermore, specifically developed apodization structures will be discussed. These are necessary because due to dispersion issues, the time-domain background and sample interferograms are non-symmetrical [6-8]. These procedures can lead to a more precise estimation of the complex insertion loss function. The algorithms are applicable to femtosecond spectroscopies across the EM spectrum. Finally, a methodology for femtosecond pulse shaping using genetic algorithms aiming to map and control molecular relaxation processes will be mentioned.
Apodisation, denoising and system identification techniques for THz transients in the wavelet domain
Resumo:
This work describes the use of a quadratic programming optimization procedure for designing asymmetric apodization windows to de-noise THz transient interferograms and compares these results to those obtained when wavelet signal processing algorithms are adopted. A systems identification technique in the wavelet domain is also proposed for the estimation of the complex insertion loss function. The proposed techniques can enhance the frequency dependent dynamic range of an experiment and should be of particular interest to the THz imaging and tomography community. Future advances in THz sources and detectors are likely to increase the signal-to-noise ratio of the recorded THz transients and high quality apodization techniques will become more important, and may set the limit on the achievable accuracy of the deduced spectrum.
Resumo:
A tunable radial basis function (RBF) network model is proposed for nonlinear system identification using particle swarm optimisation (PSO). At each stage of orthogonal forward regression (OFR) model construction, PSO optimises one RBF unit's centre vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error (MSE). This PSO aided OFR automatically determines how many tunable RBF nodes are sufficient for modelling. Compared with the-state-of-the-art local regularisation assisted orthogonal least squares algorithm based on the LOO MSE criterion for constructing fixed-node RBF network models, the PSO tuned RBF model construction produces more parsimonious RBF models with better generalisation performance and is computationally more efficient.
Resumo:
Dynamic neural networks (DNNs), which are also known as recurrent neural networks, are often used for nonlinear system identification. The main contribution of this letter is the introduction of an efficient parameterization of a class of DNNs. Having to adjust less parameters simplifies the training problem and leads to more parsimonious models. The parameterization is based on approximation theory dealing with the ability of a class of DNNs to approximate finite trajectories of nonautonomous systems. The use of the proposed parameterization is illustrated through a numerical example, using data from a nonlinear model of a magnetic levitation system.
Nonlinear system identification using particle swarm optimisation tuned radial basis function models
Resumo:
A novel particle swarm optimisation (PSO) tuned radial basis function (RBF) network model is proposed for identification of non-linear systems. At each stage of orthogonal forward regression (OFR) model construction process, PSO is adopted to tune one RBF unit's centre vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error (MSE). This PSO aided OFR automatically determines how many tunable RBF nodes are sufficient for modelling. Compared with the-state-of-the-art local regularisation assisted orthogonal least squares algorithm based on the LOO MSE criterion for constructing fixed-node RBF network models, the PSO tuned RBF model construction produces more parsimonious RBF models with better generalisation performance and is often more efficient in model construction. The effectiveness of the proposed PSO aided OFR algorithm for constructing tunable node RBF models is demonstrated using three real data sets.