7 resultados para swimming pool

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During each of the late Pleistocene glacial–interglacial transitions, atmospheric carbon dioxide concentrations rose by almost 100 ppm. The sources of this carbon are unclear, and efforts to identify them are hampered by uncertainties in the magnitude of carbon reservoirs and fluxes under glacial conditions. Here we use oxygen isotope measurements from air trapped in ice cores and ocean carbon-cycle modelling to estimate terrestrial and oceanic gross primary productivity during the Last Glacial Maximum. We find that the rate of gross terrestrial primary production during the Last Glacial Maximum was about 40±10 Pg C yr−1, half that of the pre-industrial Holocene. Despite the low levels of photosynthesis, we estimate that the late glacial terrestrial biosphere contained only 330 Pg less carbon than pre-industrial levels. We infer that the area covered by carbon-rich but unproductive biomes such as tundra and cold steppes was significantly larger during the Last Glacial Maximum, consistent with palaeoecological data. Our data also indicate the presence of an inert carbon pool of 2,300 Pg C, about 700 Pg larger than the inert carbon locked in permafrost today. We suggest that the disappearance of this carbon pool at the end of the Last Glacial Maximum may have contributed to the deglacial rise in atmospheric carbon dioxide concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria possess a range of mechanisms to move in different environments, and these mechanisms have important direct and correlated impacts on the virulence of opportunistic pathogens. Bacteria use two surface organelles to facilitate motility: a single polar flagellum, and type IV pili, enabling swimming in aqueous habitats and twitching along hard surfaces, respectively. Here, we address whether there are trade-offs between these motility mechanisms, and hence whether different environments could select for altered motility. We experimentally evolved initially isogenic Pseudomonas aeruginosa under conditions that favored the different types of motility, and found evidence for a trade-off mediated by antagonistic pleiotropy between swimming and twitching. Moreover, changes in motility resulted in correlated changes in other behaviors, including biofilm formation and growth within an insect host. This suggests environmental origins of a particular motile opportunistic pathogen could predictably influence motility and virulence

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the processes responsible for the intraseasonal displacements of the eastern edge of the western Pacific warm pool (WPEE), which appear to play a role in the onset and development of El Niño events. We use 25 years of output from an ocean general circulation model experiment that is able to accurately capture the observed displacements of the WPEE, sea level anomalies, and upper ocean zonal currents at intraseasonal time scales in the western and central Pacific Ocean. Our results confirm that WPEE displacements driven by westerly wind events (WWEs) are largely controlled by zonal advection. This paper has also two novel findings: first, the zonal current anomalies responsible for the WPEE advection are driven primarily by local wind stress anomalies and not by intraseasonal wind-forced Kelvin waves as has been shown in most previous studies. Second, we find that intraseasonal WPEE fluctuations that are not related to WWEs are generally caused by intraseasonal variations in net heat flux, in contrast to interannual WPEE displacements that are largely driven by zonal advection. This study hence raises an interesting question: can surface heat flux-induced zonal WPEE motions contribute to El Niño–Southern Oscillation evolution, as WWEs have been shown to be able to do?