5 resultados para surface morphological defect

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Few studies have investigated how individuals diagnosed with post-stroke Broca’s aphasia decompose words into their constituent morphemes in real-time processing. Previous research has focused on morphologically complex words in non-time-constrained settings or in syntactic frames, but not in the lexicon. Aims: We examined real-time processing of morphologically complex words in a group of five Greek-speaking individuals with Broca’s aphasia to determine: (1) whether their morphological decomposition mechanisms are sensitive to lexical (orthography and frequency) vs. morphological (stem-suffix combinatory features) factors during visual word recognition, (2) whether these mechanisms are different in inflected vs. derived forms during lexical access, and (3) whether there is a preferred unit of lexical access (syllables vs. morphemes) for inflected vs. derived forms. Methods & Procedures: The study included two real-time experiments. The first was a semantic judgment task necessitating participants’ categorical judgments for high- and low-frequency inflected real words and pseudohomophones of the real words created by either an orthographic error at the stem or a homophonous (but incorrect) inflectional suffix. The second experiment was a letter-priming task at the syllabic or morphemic boundary of morphologically transparent inflected and derived words whose stems and suffixes were matched for length, lemma and surface frequency. Outcomes & Results: The majority of the individuals with Broca’s aphasia were sensitive to lexical frequency and stem orthography, while ignoring the morphological combinatory information encoded in the inflectional suffix that control participants were sensitive to. The letter-priming task, on the other hand, showed that individuals with aphasia—in contrast to controls—showed preferences with regard to the unit of lexical access, i.e., they were overall faster on syllabically than morphemically parsed words and their morphological decomposition mechanisms for inflected and derived forms were modulated by the unit of lexical access. Conclusions: Our results show that in morphological processing, Greek-speaking persons with aphasia rely mainly on stem access and thus are only sensitive to orthographic violations of the stem morphemes, but not to illegal morphological combinations of stems and suffixes. This possibly indicates an intact orthographic lexicon but deficient morphological decomposition mechanisms, possibly stemming from an underspecification of inflectional suffixes in the participants’ grammar. Syllabic information, however, appears to facilitate lexical access and elicits repair mechanisms that compensate for deviant morphological parsing procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the orientational ordering on the surface of a sphere using Monte Carlo and Brownian dynamics simulations of rods interacting with an anisotropic potential. We restrict the orientations to the local tangent plane of the spherical surface and fix the position of each rod to be at a discrete point on the spherical surface. On the surface of a sphere, orientational ordering cannot be perfectly nematic due to the inevitable presence of defects. We find that the ground state of four +1/2 point defects is stable across a broad range of temperatures. We investigate the transition from disordered to ordered phase by decreasing the temperature and find a very smooth transition. We use fluctuations of the local directors to estimate the Frank elastic constant on the surface of a sphere and compare it to the planar case. We observe subdiffusive behavior in the mean square displacement of the defect cores and estimate their diffusion constants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The detection of physiological signals from the motor system (electromyographic signals) is being utilized in the practice clinic to guide the therapist in a more precise and accurate diagnosis of motor disorders. In this context, the process of decomposition of EMG (electromyographic) signals that includes the identification and classification of MUAP (Motor Unit Action Potential) of a EMG signal, is very important to help the therapist in the evaluation of motor disorders. The EMG decomposition is a complex task due to EMG features depend on the electrode type (needle or surface), its placement related to the muscle, the contraction level and the health of the Neuromuscular System. To date, the majority of researches on EMG decomposition utilize EMG signals acquired by needle electrodes, due to their advantages in processing this type of signal. However, relatively few researches have been conducted using surface EMG signals. Thus, this article aims to contribute to the clinical practice by presenting a technique that permit the decomposition of surface EMG signal via the use of Hidden Markov Models. This process is supported by the use of differential evolution and spectral clustering techniques. The developed system presented coherent results in: (1) identification of the number of Motor Units actives in the EMG signal; (2) presentation of the morphological patterns of MUAPs in the EMG signal; (3) identification of the firing sequence of the Motor Units. The model proposed in this work is an advance in the research area of decomposition of surface EMG signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Change in morphological and physiological parameters in response to phosphorus (P) supply was studied in 11 perennial herbaceous legume species, six Australian native (Lotus australis, Cullen australasicum, Kennedia prorepens, K. prostrata, Glycine canescens, C. tenax) and five exotic species (Medicago sativa, Lotononis bainesii, Bituminaria bituminosa var albomarginata, Lotus corniculatus, Macroptilium bracteatum). We aimed to identify mechanisms for P acquisition from soil. Plants were grown in sterilised washed river sand; eight levels of P as KH2PO4 ranging from 0 to 384 μg P g−1 soil were applied. Plant growth under low-P conditions strongly correlated with physiological P-use efficiency and/or P-uptake efficiency. Taking all species together, at 6 μg P g−1 soil there was a good correlation between P uptake and both root surface area and total root length. All species had higher amounts of carboxylates in the rhizosphere under a low level of P application. Six of the 11 species increased the fraction of rhizosphere citrate in response to low P, which was accompanied by a reduction in malonate, except L. corniculatus. In addition, species showed different plasticity in response to P-application levels and different strategies in response to P deficiency. Our results show that many of the 11 species have prospects for low-input agroecosystems based on their high P-uptake and P-use efficiency.