5 resultados para surface mechanical attrition treatment (SMAT)

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The human amniotic membrane (AM) is a tissue of fetal origin and has proven to be clinically useful as a biomaterial in the management of various ocular surface disorders including corneal stem cell transplantation. However, its success rate displays a degree of clinical unpredictability. We suggest that the measured variability inAMstiffness offers an explanation for the poor clinical reproducibility when it is used as a substrate for stem cell expansion and transplantation. Corneal epithelial stem cells were expanded upon AM samples possessing different mechanical stiffness. To investigate further the importance of biological substrate stiffness on cell phenotype we replaced AM with type I collagen gels of known stiffness. Substrate stiffness was measured using shear rheometry and surface topography was characterized using scanning electron microscopy and atomic force microscopy. The differentiation status of epithelial cells was examined using RT-PCR, immunohistochemistry and Western blotting. The level of corneal stem cell differentiation was increased in cells expanded upon AM with a high dynamic elastic shear modulus and cell expansion on type I collagen gels confirmed that the level of corneal epithelial stem cell differentiation was related to the substrate’s mechanical properties. In this paper we provide evidence to show that the preparatory method of AM for clinical use can affect its mechanical properties and that these measured differences can influence the level of differentiation within expanded corneal epithelial stem cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Corneal blindness caused by limbal stem cell deficiency (LSCD) is a prevailing disorder worldwide. Clinical outcomes for LSCD therapy using amniotic membrane (AM) are unpredictable. Hydrogels can eliminate limitations of standard therapy for LSCD, because they present all the advantages of AM (i.e. biocompatibility, inertness and a biodegradable structure) but unlike AM, they are structurally uniform and can be easily manipulated to alter mechanical and physical properties. Hydrogels can be delivered with minimum trauma to the ocular surface and do not require extensive serological screening before clinical application. The hydrogel structure is also amenable to modifications which direct stem cell fate. In this focussed review we highlight hydrogels as biomaterial substrates which may replace and/or complement AM in the treatment of LSCD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

he classical problem of the response of a balanced, axisymmetric vortex to thermal and mechanical forcing is re-examined, paying special attention to the lower boundary condition. The correct condition is DΦ/Dt = 0, where Φ is the geopotential and D/Dt the material derivative, which explicitly accounts for a mass redistribution as part of the mean-flow response. This redistribution is neglected when using the boundary condition Dp/Dt = 0, which has conventionally been applied in this problem. It is shown that applying the incorrect boundary condition, and thereby ignoring the surface pressure change, leads to a zonal wind acceleration δū/δt that is too strong, especially near the surface. The effect is significant for planetary-scale forcing even when applied at tropopause level. A comparison is made between the mean-flow evolution in a baroclinic life-cycle, as simulated in a fully nonlinear, primitive-equation model, and that predicted by using the simulated eddy fluxes in the zonally-symmetric response problem. Use of the correct lower boundary condition is shown to lead to improved agreement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Uncertainty regarding changes in dissolved organic carbon (DOC) quantity and quality has created interest in managing peatlands for their ecosystem services such as drinking water provision. The evidence base for such interventions is, however, sometimes contradictory. We performed a laboratory climate manipulation using a factorial design on two dominant peatland vegetation types (Calluna vulgaris and Sphagnum Spp.) and a peat soil collected from a drinking water catchment in Exmoor National Park, UK. Temperature and rainfall were set to represent baseline and future conditions under the UKCP09 2080s high emissions scenario for July and August. DOC leachate then underwent standard water treatment of coagulation/flocculation before chlorination. C. vulgaris leached more DOC than Sphagnum Spp. (7.17 versus 3.00 mg g−1) with higher specific ultraviolet (SUVA) values and a greater sensitivity to climate, leaching more DOC under simulated future conditions. The peat soil leached less DOC (0.37 mg g−1) than the vegetation and was less sensitive to climate. Differences in coagulation removal efficiency between the DOC sources appears to be driven by relative solubilisation of protein-like DOC, observed through the fluorescence peak C/T. Post-coagulation only differences between vegetation types were detected for the regulated disinfection by-products (DBPs), suggesting climate change influence at this scale can be removed via coagulation. Our results suggest current biodiversity restoration programmes to encourage Sphagnum Spp. will result in lower DOC concentrations and SUVA values, particularly with warmer and drier summers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tiger nut (Cyperus esculentus) tuber contains oil that is high in monounsaturated fatty acids, and this oil makes up about 23% of the tuber. The study aimed at evaluating the impact of several factors and enzymatic pre-treatment on the recovery of pressed tiger nut oil. Smaller particles were more favourable for pressing. High pressure pre-treatment did not increase oil recovery but enzymatic treatment did. The highest yield obtained by enzymatic treatment prior to mechanical extraction was 33 % on a dry defatted basis, which represents a recovery of 90 % of the oil. Tiger nut oil consists mainly of oleic acid; its acid and peroxide values reflect the high stability of the oil.