4 resultados para subset sum problems
em CentAUR: Central Archive University of Reading - UK
Resumo:
We study boundary value problems for a linear evolution equation with spatial derivatives of arbitrary order, on the domain 0 < x < L, 0 < t < T, with L and T positive nite constants. We present a general method for identifying well-posed problems, as well as for constructing an explicit representation of the solution of such problems. This representation has explicit x and t dependence, and it consists of an integral in the k-complex plane and of a discrete sum. As illustrative examples we solve some two-point boundary value problems for the equations iqt + qxx = 0 and qt + qxxx = 0.
Resumo:
We investigate the spectrum of certain integro-differential-delay equations (IDDEs) which arise naturally within spatially distributed, nonlocal, pattern formation problems. Our approach is based on the reformulation of the relevant dispersion relations with the use of the Lambert function. As a particular application of this approach, we consider the case of the Amari delay neural field equation which describes the local activity of a population of neurons taking into consideration the finite propagation speed of the electric signal. We show that if the kernel appearing in this equation is symmetric around some point a= 0 or consists of a sum of such terms, then the relevant dispersion relation yields spectra with an infinite number of branches, as opposed to finite sets of eigenvalues considered in previous works. Also, in earlier works the focus has been on the most rightward part of the spectrum and the possibility of an instability driven pattern formation. Here, we numerically survey the structure of the entire spectra and argue that a detailed knowledge of this structure is important within neurodynamical applications. Indeed, the Amari IDDE acts as a filter with the ability to recognise and respond whenever it is excited in such a way so as to resonate with one of its rightward modes, thereby amplifying such inputs and dampening others. Finally, we discuss how these results can be generalised to the case of systems of IDDEs.
Resumo:
Gossip (or Epidemic) protocols have emerged as a communication and computation paradigm for large-scale networked systems. These protocols are based on randomised communication, which provides probabilistic guarantees on convergence speed and accuracy. They also provide robustness, scalability, computational and communication efficiency and high stability under disruption. This work presents a novel Gossip protocol named Symmetric Push-Sum Protocol for the computation of global aggregates (e.g., average) in decentralised and asynchronous systems. The proposed approach combines the simplicity of the push-based approach and the efficiency of the push-pull schemes. The push-pull schemes cannot be directly employed in asynchronous systems as they require synchronous paired communication operations to guarantee their accuracy. Although push schemes guarantee accuracy even with asynchronous communication, they suffer from a slower and unstable convergence. Symmetric Push- Sum Protocol does not require synchronous communication and achieves a convergence speed similar to the push-pull schemes, while keeping the accuracy stability of the push scheme. In the experimental analysis, we focus on computing the global average as an important class of node aggregation problems. The results have confirmed that the proposed method inherits the advantages of both other schemes and outperforms well-known state of the art protocols for decentralized Gossip-based aggregation.
Resumo:
We introduce a new algorithm for source identification and field splitting based on the point source method (Potthast 1998 A point-source method for inverse acoustic and electromagnetic obstacle scattering problems IMA J. Appl. Math. 61 119–40, Potthast R 1996 A fast new method to solve inverse scattering problems Inverse Problems 12 731–42). The task is to separate the sound fields uj, j = 1, ..., n of sound sources supported in different bounded domains G1, ..., Gn in from measurements of the field on some microphone array—mathematically speaking from the knowledge of the sum of the fields u = u1 + + un on some open subset Λ of a plane. The main idea of the scheme is to calculate filter functions , to construct uℓ for ℓ = 1, ..., n from u|Λ in the form We will provide the complete mathematical theory for the field splitting via the point source method. In particular, we describe uniqueness, solvability of the problem and convergence and stability of the algorithm. In the second part we describe the practical realization of the splitting for real data measurements carried out at the Institute for Sound and Vibration Research at Southampton, UK. A practical demonstration of the original recording and the splitting results for real data is available online.