4 resultados para streptomyces aureofaciens
em CentAUR: Central Archive University of Reading - UK
Resumo:
The role of clavulanic acid, an unstable antibiotic produced by Streptomyces clavuligerus, in biomass accumulation and production of clavulanic acid in batch cultures of the organism was examined. The organism was grown in a medium containing either 20 g/l lysine, 1 g/l lysine or 1 g/l lysine supplemented with degraded clavulanic acid as nitrogen sources. Biomass accumulation was highest in cultures grown with supplemented degraded clavulanic acid and reached a maximum of 2.2 g/l, compared with 1.5 g/l when lysine only was used. The yield coefficient for clavulanic acid production was again highest in cultures grown with supplemented degraded clavulanic acid, with a Y-p/x, value of 2 mg/g compared with Y-p/x value of 1.5 mg/g in 20 g/l lysine. No clavulanic acid was produced in cultures containing non-supplemented 1 g/l lysine. Non-degraded clavulanic, acid was added at 60 h to non-producing cultures of the organism containing 1 g/l lysine only. Clavulanic acid concentration immediately decreased on addition from 0.04 g/l over a period of 20 h, then remained constant at 0.02 g/l for a further 30 h until the end of the cultivation. This suggests that the rate of degradation was equivalent to the rate of production of clavulanic acid following a period of initial additive degradation. These results indicate that clavulanic acid is both produced and degraded in cultures of S. clavuligerus and that the products of degradation are used by the organism, resulting in further production of the antibiotic. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
The galE gene of Streptomyces lividans was used to probe a cosmid library harbouring Brucella melitensis 16M DNA and the nucleotide sequence of a 2.5 kb ClaI fragment which hybridised was determined. An open reading frame encoding a predicted polypeptide with significant homology to UDP-galactose-4-epimerases of Brucella arbortus strain 2308 and other bacterial species was identified. DNA sequences flanking the B. melitensis galE gene shared no identity with other gal genes and, as for B. abortus, were located adjacent to a mazG homologue. A plasmid which encoded the B. melitensis galE open reading frame complemented a galE mutation in Salmonella typhimurium LB5010, as shown by the restoration of smooth lipopolysaccharide (LPS) biosynthesis, sensitivity to phage P22 infection and restoration of UDP-galactose-4-epimerase activity. The galE gene on the B. melitensis 16M chromosome was disrupted by insertional inactivation and these mutants lacked UDP-galactose-4-epimerase activity but no discernible differences in LPS structure between parent and the mutants were observed. One B. melitensis 16M galE mutant, Bm92, was assessed for virulence in CD-1 and BALB/c mice and displayed similar kinetics of invasion and persistence in tissues compared with the parent bacterial strain. CD-1 mice immunised with B. melitensis 16M galE were protected against B. melitensis 16M challenge. Crown Copyright (C) 1999 Published by Elsevier Science B.V.
Resumo:
Irrigation is a major husbandry tool, vital for world food production and security. The purpose of this review is twofold:- firstly drawing attention to the beneficial and deleterious aspects of irrigation resulting from interactions with the microbial world; secondly, forming a basis for encouraging further research and development. Irrigation is for example, a valuable component in the control of some soil borne pathogens such as Streptomyces scabies, the cause of potato common scab and Fusarium cubense, a cause of banana wilt. By contrast, applying irrigation encourages some foliar pathogens and factors such as splash dispersal of propagules and the retention of leaf wetness are important elements in the successful establishment of disease foci. Irrigation applied at low levels in the canopy directly towards the stem bases and root zones of plants also provides means encouraging disease development. Irrigation also offers means for the direct spread of microbes such as water borne moulds, Oomycetes, and plasmodial pathogens coming from populations present in the water supply. The presence of plant disease causing microbes in sources of irrigation has been associated with outbreaks of diseases such as clubroot (Plasmodiophora brassicae). Irrigation can be utilised as a means for applying agrochemicals, fungigation. The developing technologies of water restriction and root zone drying also have an impact on the success of disease causing organisms. This is an emerging technology and its interactions with benign and pathogenic microbes require consideration.
Resumo:
BACKGROUND: Chemical chitin extraction generates large amounts of wastes and increases partial deacetylation of the product. Therefore, the use of biological methods for chitin extraction is an interesting alternative. The effects of process conditions on enzyme assisted extraction of chitin from the shrimp shells in a systematic way were the focal points of this study. RESULTS: Demineralisation conditions of 25C, 20 min, shells-lactic acid ratio of 1:1.1 w/w; and shells-acetic acid ratio of 1:1.2 w/w, the maximum demineralisation values were 98.64 and 97.57% for lactic and acetic acids, respectively. A total protein removal efficiency of 91.10% by protease from Streptomyces griseus with enzyme-substrate ratio 55 U/g, pH 7.0 and incubation time 3 h is obtained when the particle size range is 50-25 μm, which was identified as the most critical factor. The X-ray diffraction and 13C NMR spectroscopy analysis showed that the lower percent crystallinity and higher degree of acetylation of chitin from enzyme assisted extraction may exhibit better solubility properties and less depolymerisation in comparison with chitin from the chemical extraction. CONCLUSION: The present work investigates the effects of individual factors on process yields, and it has shown that, if the particle size is properly controlled a reaction time of 3 h is more than enough for deproteination by protease. Physicochemical analysis indicated that the enzyme assisted production of chitin seems appropriate to extract chitin, possibly retaining its native structure.