12 resultados para stimuli-responsive materials
em CentAUR: Central Archive University of Reading - UK
Resumo:
The discovery of polymers with stimuli responsive physical properties is a rapidly expanding area of research. At the forefront of the field are self-healing polymers, which, when fractured can regain the mechanical properties of the material either autonomically, or in response to a stimulus. It has long been known that it is possible to promote healing in conventional thermoplastics by heating the fracture zone above the Tg of the polymer under pressure. This process requires reptation and subsequent re-entanglement of macromolecules across the fracture void, which serves to bridge, and ‘heal’ the crack. The timescale for this mechanism is highly dependent on the molecular weight of the polymer being studied. This process is in contrast to that required to affect healing in supramolecular polymers such as the plasticised, hydrogen bonded elastomer reported by Leibler et al. The disparity in bond energies between the non-covalent and covalent bonds within supramolecular polymers results in fractures propagating through scission of the comparatively weak supramolecular interactions, rather than through breaking the stronger, covalent bonds. Thus, during the healing process the macromolecules surrounding the fracture site only need sufficient energy to re-engage their supramolecular interactions in order to regenerate the strength of the pristine material. Herein we describe the design, synthesis and optimization of a new class of supramolecular polymer blends that harness the reversible nature of pi-pi stacking and hydrogen bonding interactions to produce self-supporting films with facile healable characteristics.
Resumo:
This review describes the state-of the-art of nano-, micro- and macrogels, membranes, micro- and nanocapsules, as well as multilayered thin films exhibiting amphoteric character. The synthetic strategies and physicochemical properties of amphoteric materials are outlined in light of the stimuli-responsive behavior and their potential application in nanotechnology, biotechnology and medicine.
Resumo:
This chapter details the design, synthesis and evaluation techniques required to produce healable supramolecular materials. Key developments in supramolecular polymer chemistry that laid down the design concepts necessary to produce responsive materials are summarized. Subsequently, select examples from the literature concerning the synthesis and analysis of healable materials containing hydrogen bonding, π−π stacking and metal–ligand interactions are evaluated. The last section describes the most recent efforts to produce healable gels for niche applications, including electrolytes and tissue engineering scaffolds. The chapter also describes the design criteria and production of nano-composite materials that exhibit dramatically increased strength compared to previous generations of supramolecular materials, whilst still retaining the key healing characteristics.
Resumo:
Polymers with the ability to heal themselves could provide access to materials with extended lifetimes in a wide range of applications such as surface coatings, automotive components and aerospace composites. Here we describe the synthesis and characterisation of two novel, stimuli-responsive, supramolecular polymer blends based on π-electron-rich pyrenyl residues and π-electron-deficient, chain-folding aromatic diimides that interact through complementary π–π stacking interactions. Different degrees of supramolecular “cross-linking” were achieved by use of divalent or trivalent poly(ethylene glycol)-based polymers featuring pyrenyl end-groups, blended with a known diimide–ether copolymer. The mechanical properties of the resulting polymer blends revealed that higher degrees of supramolecular “cross-link density” yield materials with enhanced mechanical properties, such as increased tensile modulus, modulus of toughness, elasticity and yield point. After a number of break/heal cycles, these materials were found to retain the characteristics of the pristine polymer blend, and this new approach thus offers a simple route to mechanically robust yet healable materials.
Resumo:
A two-component, supramolecular polymer blend has been designed using a novel π-electron rich bisperylene- terminated polyether. This polymer is able to self-assemble through electronically complementary π–π stacking interactions with a π-electron-deficient chain-folding polydiimide to afford thermally healable polymer blends. Model compounds were developed to assess the suitability of the deep green complexes formed between perylene residues and chain-folding bis-diimides for use in polymer blends. The polymer blends thus synthesised were elastomeric in nature and demonstrated healable properties as demonstrated by scanning electron microscopy. Healing was observed to occur rapidly at ca. 75 degC, and excellent healing efficiencies were found by tensometric and rheometric analyses. These tuneable, stimuli-responsive, supramolecular polymer blends are compared to related healable blends featuring pyrene-terminated oligomers.
Resumo:
The ability to generate very stable assemblies via non-covalent interactions has enabled materials to be constructed that were not feasible via traditional covalent bond formation processes. A series of low molecular mass bisurethane and bisurea polymers have been developed that form stable self-assembled networks through hydrogen bonding interactions. Thermo-responsive polymers were generated by end-capping poly(ethylene-co-butylene) or polybutadiene chains with the bisurethane or bisurea motif. Microphase separation is observed via TEM and small-angle X-ray scattering (SAXS) for the modified pseudo polymers and significant differences in the temperature dependence of microphase separation are analysed via SAXS. The importance of the polarity of the end groups is manifested in distinct temperature-dependent microphase separation behaviour. Information on the local hydrogen bonding structure is provided by wide-angle X-ray scattering and variable temperature FTI
Resumo:
The present paper details the synthesis, characterization, and preliminary physical analyses of a series of polyisobutylene derivatives featuring urethane and urea end-groups that enable supramolecular network formation to occur via hydrogen bonding. These polymers are readily accessible from relatively inexpensive and commercially available starting materials using a simple two-step synthetic approach. In the bulk, these supramolecular networks were found to possess thermoreversible and elastomeric characteristics as determined by temperature-dependent rheological analysis. These thermoreversible and elastomeric properties make these supramolecular materials potentially very useful in applications such as adhesives and healable surface coatings.
Resumo:
In the biomimetic design two hydrophobic pentapetides Boc-Ile-Aib-Leu-Phe-Ala-OMe ( I) and Boc-Gly-Ile-Aib-Leu-Phe-OMe (II) (Aib: alpha-aminoisobutyric acid) containing one Aib each are found to undergo solvent assisted self-assembly in methanol/water to form vesicular structures, which can be disrupted by simple addition of acid. The nanovesicles are found to encapsulate dye molecules that can be released by the addition of acid as confirmed by fluorescence microscopy and UV studies. The influence of solvent polarity on the morphology of the materials generated from the peptides has been examined systematically, and shows that fibrillar structures are formed in less polar chloroform/petroleum ether mixture and vesicular structures are formed in more polar methanol/water. Single crystal X-ray diffraction studies reveal that while beta-sheet mediated self-assembly leads to the formation of fibrillar structures, the solvated beta-sheet structure leads to the formation of vesicular structures. The results demonstrate that even hydrophobic peptides can generate vesicular structures from polar solvent which may be employed in model studies of complex biological phenomena.
Resumo:
Extracellular signal-regulated kinases 1/2 (ERK1/2) and their substrates, p90 ribosomal S6 kinases (RSKs), phosphorylate different transcription factors, contributing differentially to transcriptomic profiles. In cardiomyocytes, ERK1/2 are required for >70% of the transcriptomic response to endothelin-1. Here, we investigated the role of RSKs in the transcriptomic responses to Gq protein-coupled receptor agonists, endothelin-1, phenylephrine (generic α1-adrenergic receptor agonist) and A61603 (α1A-adrenergic receptor selective). Phospho-ERK1/2 and phospho-RSKs appeared in cardiomyocyte nuclei within 2-3 min of stimulation (endothelin-1>a61603≈phenylephrine). All agonists increased nuclear RSK2, but only endothelin-1 increased nuclear RSK1 content. PD184352 (inhibits ERK1/2 activation) and BI-D1870 (inhibits RSKs) were used to dissect the contribution of RSKs to the endothelin-1-responsive transcriptome. Of 213 RNAs upregulated at 1 h, 51% required RSKs for upregulation whereas 29% required ERK1/2 but not RSKs. The transcriptomic response to phenylephrine overlapped with, but was not identical to, endothelin-1. As with endothelin-1, PD184352 inhibited upregulation of most phenylephrine-responsive transcripts, but the greater variation in effects of BI-D1870 suggests that differential RSK signalling influences global gene expression. A61603 induced similar changes in RNA expression in cardiomyocytes as phenylephrine, indicating that the signal was mediated largely through α1A-adrenergic receptors. A61603 also increased expression of immediate early genes in perfused adult rat hearts and, as in cardiomyocytes, upregulation of the majority of genes was inhibited by PD184352. PD184352 or BI-D1870 prevented the increased surface area induced by endothelin-1 in cardiomyocytes. Thus, RSKs play a significant role in regulating cardiomyocyte gene expression and hypertrophy in response to Gq protein-coupled receptor stimulation.
Resumo:
Voluntary selective attention can prioritize different features in a visual scene. The frontal eye-fields (FEF) are one potential source of such feature-specific top-down signals, but causal evidence for influences on visual cortex (as was shown for "spatial" attention) has remained elusive. Here, we show that transcranial magnetic stimulation (TMS) applied to right FEF increased the blood oxygen level-dependent (BOLD) signals in visual areas processing "target feature" but not in "distracter feature"-processing regions. TMS-induced BOLD signals increase in motion-responsive visual cortex (MT+) when motion was attended in a display with moving dots superimposed on face stimuli, but in face-responsive fusiform area (FFA) when faces were attended to. These TMS effects on BOLD signal in both regions were negatively related to performance (on the motion task), supporting the behavioral relevance of this pathway. Our findings provide new causal evidence for the human FEF in the control of nonspatial "feature"-based attention, mediated by dynamic influences on feature-specific visual cortex that vary with the currently attended property.
Video stimuli reduce object-directed imitation accuracy: a novel two-person motion-tracking approach
Resumo:
Imitation is an important form of social behavior, and research has aimed to discover and explain the neural and kinematic aspects of imitation. However, much of this research has featured single participants imitating in response to pre-recorded video stimuli. This is in spite of findings that show reduced neural activation to video vs. real life movement stimuli, particularly in the motor cortex. We investigated the degree to which video stimuli may affect the imitation process using a novel motion tracking paradigm with high spatial and temporal resolution. We recorded 14 positions on the hands, arms, and heads of two individuals in an imitation experiment. One individual freely moved within given parameters (moving balls across a series of pegs) and a second participant imitated. This task was performed with either simple (one ball) or complex (three balls) movement difficulty, and either face-to-face or via a live video projection. After an exploratory analysis, three dependent variables were chosen for examination: 3D grip position, joint angles in the arm, and grip aperture. A cross-correlation and multivariate analysis revealed that object-directed imitation task accuracy (as represented by grip position) was reduced in video compared to face-to-face feedback, and in complex compared to simple difficulty. This was most prevalent in the left-right and forward-back motions, relevant to the imitator sitting face-to-face with the actor or with a live projected video of the same actor. The results suggest that for tasks which require object-directed imitation, video stimuli may not be an ecologically valid way to present task materials. However, no similar effects were found in the joint angle and grip aperture variables, suggesting that there are limits to the influence of video stimuli on imitation. The implications of these results are discussed with regards to previous findings, and with suggestions for future experimentation.
Resumo:
Polymers which can respond to externally applied stimuli have found much application in the biomedical field due to their (reversible) coil–globule transitions. Polymers displaying a lower critical solution temperature are the most commonly used, but for blood-borne (i.e., soluble) biomedical applications the application of heat is not always possible, nor practical. Here we report the design and synthesis of poly(oligoethylene glycol methacrylate)-based polymers whose cloud points are easily varied by alkaline phosphatase-mediated dephosphorylation. By fine-tuning the density of phosphate groups on the backbone, it was possible to induce an isothermal transition: A change in solubility triggered by removal of a small number of phosphate esters from the side chains activating the LCST-type response. As there was no temperature change involved, this serves as a model of a cell-instructed polymer response. Finally, it was found that both polymers were non cytotoxic against MCF-7 cells (at 1 mg·mL–1), which confirms promise for biomedical applications.