3 resultados para stars: individual: WASP-32

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lifetime reproductive success in female insects is often egg- or time-limited. For instance in pro-ovigenic species, when oviposition sites are abundant, females may quickly become devoid of eggs. Conversely, in the absence of suitable oviposition sites, females may die before laying all of their eggs. In pollinating fig wasps (Hymenoptera: Agaonidae), each species has an obligate mutualism with its host fig tree species [Ficus spp. (Moraceae)]. These pro-ovigenic wasps oviposit in individual ovaries within the inflorescences of monoecious Ficus (syconia, or ‘figs’), which contain many flowers. Each female flower can thus become a seed or be converted into a wasp gall. The mystery is that the wasps never oviposit in all fig ovaries, even when a fig contains enough wasp females with enough eggs to do so. The failure of all wasps to translate all of their eggs into offspring clearly contributes to mutualism persistence, but the underlying causal mechanisms are unclear. We found in an undescribed Brazilian Pegoscapus wasp population that the lifetime reproductive success of lone foundresses was relatively unaffected by constraints on oviposition. The number of offspring produced by lone foundresses experimentally introduced into receptive figs was generally lower than the numbers of eggs carried, despite the fact that the wasps were able to lay all or most of their eggs. Because we excluded any effects of intraspecific competitors and parasitic non-pollinating wasps, our data suggest that some pollinators produce few offspring because some of their eggs or larvae are unviable or are victims of plant defences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endophytic insects and their parasitoids provide valuable models for community ecology. The wasp communities in inflorescences of fig trees have great potential for comparative studies, but we must first describe individual communities. Here, we add to the few detailed studies of such communities by describing the one associated with Ficus rubiginosa in Australia. First, we describe community composition, using two different sampling procedures. Overall, we identified 14 species of non-pollinating fig wasp (NPFW) that fall into two size classes. Small wasps, including pollinators, gallers and their parasitoids, were more abundant than large wasps (both galler and parasitoid species). We show that in figs where wasps emerge naturally, the presence of large wasps may partly explain the low emergence of small wasps. During fig development, large gallers oviposit first, before and around the time of pollination, while parasitoids lay eggs after pollination. We further show that parasitoids in the subfamily Sycoryctinae, which comprise the majority of all individual NPFWs, segregate temporally by laying eggs at different stages of fig development. We discuss our results in terms of species co-existence and community structure and compare our findings to those from fig wasp communities on other continents.