6 resultados para sphere packing kissing number

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

SANS from deuterated ferritin and apoferritin solutions over the temperature range 5 to 300 K is presented. Above the freezing point the SANS is well described by Percus-Yevick hard sphere packing. On freezing, highly correlated, partially crystallised, clusters of the proteins form and grow with decreasing temperature. The resulting scattering, characterised by a squared Lorentzian structure factor, indicates a spatial extent of 1000 8, for the protein clusters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two styrene-isoprene-styrene block copolymers Vector 4111 and 4113, exhibiting cylindrical (18 wt % PS) and spherical (16 wt % PS) morphology, respectively, have been examined under uniaxial elongation up to 200% strain. On the basis of stress-strain data, mechanical properties are compared for isotropic and oriented polystyrene domains. The structure at various stages of deformation has been determined from SAXS patterns in three planes and two principal deformation directions with respect to orientation. Samples showed a very high degree of hexagonal packing, resulting in an X-ray pattern taken parallel to the cylinder alignment approaching single crystal ordering. Cylinders were aligned with the closest packed planes parallel to film surface. Particular attention has been paid to a lattice deformation process occurring during the first stretching and relaxation cycle. For a copolymer with oriented cylindrical morphology the deformation was affine up to 120% strain. The microdomain spacing was calculated parallel and perpendicular to the stretching direction. The cylindrical microstructure orientation, quantified by Hermans' orientation factor reduced during elongation of oriented polymer, while the elongation of isotropic sample caused an increase of orientation. Deformation of all studied morphologies was reversible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sampling of certain solid angle is a fundamental operation in realistic image synthesis, where the rendering equation describing the light propagation in closed domains is solved. Monte Carlo methods for solving the rendering equation use sampling of the solid angle subtended by unit hemisphere or unit sphere in order to perform the numerical integration of the rendering equation. In this work we consider the problem for generation of uniformly distributed random samples over hemisphere and sphere. Our aim is to construct and study the parallel sampling scheme for hemisphere and sphere. First we apply the symmetry property for partitioning of hemisphere and sphere. The domain of solid angle subtended by a hemisphere is divided into a number of equal sub-domains. Each sub-domain represents solid angle subtended by orthogonal spherical triangle with fixed vertices and computable parameters. Then we introduce two new algorithms for sampling of orthogonal spherical triangles. Both algorithms are based on a transformation of the unit square. Similarly to the Arvo's algorithm for sampling of arbitrary spherical triangle the suggested algorithms accommodate the stratified sampling. We derive the necessary transformations for the algorithms. The first sampling algorithm generates a sample by mapping of the unit square onto orthogonal spherical triangle. The second algorithm directly compute the unit radius vector of a sampling point inside to the orthogonal spherical triangle. The sampling of total hemisphere and sphere is performed in parallel for all sub-domains simultaneously by using the symmetry property of partitioning. The applicability of the corresponding parallel sampling scheme for Monte Carlo and Quasi-D/lonte Carlo solving of rendering equation is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a method for reconstructing 3D frontier points, contour generators and surfaces of anatomical objects or smooth surfaces from a small number, e. g. 10, of conventional 2D X-ray images. The X-ray images are taken at different viewing directions with full prior knowledge of the X-ray source and sensor configurations. Unlike previous works, we empirically demonstrate that if the viewing directions are uniformly distributed around the object's viewing sphere, then the reconstructed 3D points automatically cluster closely on a highly curved part of the surface and are widely spread on smooth or flat parts. The advantage of this property is that the reconstructed points along a surface or a contour generator are not under-sampled or under-represented because surfaces or contours should be sampled or represented with more densely points where their curvatures are high. The more complex the contour's shape, the greater is the number of points required, but the greater the number of points is automatically generated by the proposed method. Given that the number of viewing directions is fixed and the viewing directions are uniformly distributed, the number and distribution of the reconstructed points depend on the shape or the curvature of the surface regardless of the size of the surface or the size of the object. The technique may be used not only in medicine but also in industrial applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the classical coupled, combined-field integral equation formulations for time-harmonic acoustic scattering by a sound soft bounded obstacle. In recent work, we have proved lower and upper bounds on the $L^2$ condition numbers for these formulations, and also on the norms of the classical acoustic single- and double-layer potential operators. These bounds to some extent make explicit the dependence of condition numbers on the wave number $k$, the geometry of the scatterer, and the coupling parameter. For example, with the usual choice of coupling parameter they show that, while the condition number grows like $k^{1/3}$ as $k\to\infty$, when the scatterer is a circle or sphere, it can grow as fast as $k^{7/5}$ for a class of `trapping' obstacles. In this paper we prove further bounds, sharpening and extending our previous results. In particular we show that there exist trapping obstacles for which the condition numbers grow as fast as $\exp(\gamma k)$, for some $\gamma>0$, as $k\to\infty$ through some sequence. This result depends on exponential localisation bounds on Laplace eigenfunctions in an ellipse that we prove in the appendix. We also clarify the correct choice of coupling parameter in 2D for low $k$. In the second part of the paper we focus on the boundary element discretisation of these operators. We discuss the extent to which the bounds on the continuous operators are also satisfied by their discrete counterparts and, via numerical experiments, we provide supporting evidence for some of the theoretical results, both quantitative and asymptotic, indicating further which of the upper and lower bounds may be sharper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An equation of Monge-Ampère type has, for the first time, been solved numerically on the surface of the sphere in order to generate optimally transported (OT) meshes, equidistributed with respect to a monitor function. Optimal transport generates meshes that keep the same connectivity as the original mesh, making them suitable for r-adaptive simulations, in which the equations of motion can be solved in a moving frame of reference in order to avoid mapping the solution between old and new meshes and to avoid load balancing problems on parallel computers. The semi-implicit solution of the Monge-Ampère type equation involves a new linearisation of the Hessian term, and exponential maps are used to map from old to new meshes on the sphere. The determinant of the Hessian is evaluated as the change in volume between old and new mesh cells, rather than using numerical approximations to the gradients. OT meshes are generated to compare with centroidal Voronoi tesselations on the sphere and are found to have advantages and disadvantages; OT equidistribution is more accurate, the number of iterations to convergence is independent of the mesh size, face skewness is reduced and the connectivity does not change. However anisotropy is higher and the OT meshes are non-orthogonal. It is shown that optimal transport on the sphere leads to meshes that do not tangle. However, tangling can be introduced by numerical errors in calculating the gradient of the mesh potential. Methods for alleviating this problem are explored. Finally, OT meshes are generated using observed precipitation as a monitor function, in order to demonstrate the potential power of the technique.