8 resultados para spectral peak tracks
em CentAUR: Central Archive University of Reading - UK
Resumo:
We introduce an algorithm (called REDFITmc2) for spectrum estimation in the presence of timescale errors. It is based on the Lomb-Scargle periodogram for unevenly spaced time series, in combination with the Welch's Overlapped Segment Averaging procedure, bootstrap bias correction and persistence estimation. The timescale errors are modelled parametrically and included in the simulations for determining (1) the upper levels of the spectrum of the red-noise AR(1) alternative and (2) the uncertainty of the frequency of a spectral peak. Application of REDFITmc2 to ice core and stalagmite records of palaeoclimate allowed a more realistic evaluation of spectral peaks than when ignoring this source of uncertainty. The results support qualitatively the intuition that stronger effects on the spectrum estimate (decreased detectability and increased frequency uncertainty) occur for higher frequencies. The surplus information brought by algorithm REDFITmc2 is that those effects are quantified. Regarding timescale construction, not only the fixpoints, dating errors and the functional form of the age-depth model play a role. Also the joint distribution of all time points (serial correlation, stratigraphic order) determines spectrum estimation.
Resumo:
The North Atlantic Ocean subpolar gyre (NA SPG) is an important region for initialising decadal climate forecasts. Climate model simulations and palaeo climate reconstructions have indicated that this region could also exhibit large, internally generated variability on decadal timescales. Understanding these modes of variability, their consistency across models, and the conditions in which they exist, is clearly important for improving the skill of decadal predictions — particularly when these predictions are made with the same underlying climate models. Here we describe and analyse a mode of internal variability in the NA SPG in a state-of-the-art, high resolution, coupled climate model. This mode has a period of 17 years and explains 15–30% of the annual variance in related ocean indices. It arises due to the advection of heat content anomalies around the NA SPG. Anomalous circulation drives the variability in the southern half of the NA SPG, whilst mean circulation and anomalous temperatures are important in the northern half. A negative feedback between Labrador Sea temperatures/densities and those in the North Atlantic Current is identified, which allows for the phase reversal. The atmosphere is found to act as a positive feedback on to this mode via the North Atlantic Oscillation which itself exhibits a spectral peak at 17 years. Decadal ocean density changes associated with this mode are driven by variations in temperature, rather than salinity — a point which models often disagree on and which we suggest may affect the veracity of the underlying assumptions of anomaly-assimilating decadal prediction methodologies.
Resumo:
Peak picking is an early key step in MS data analysis. We compare three commonly used approaches to peak picking and discuss their merits by means of statistical analysis. Methods investigated encompass signal-to-noise ratio, continuous wavelet transform, and a correlation-based approach using a Gaussian template. Functionality of the three methods is illustrated and discussed in a practical context using a mass spectral data set created with MALDI-TOF technology. Sensitivity and specificity are investigated using a manually defined reference set of peaks. As an additional criterion, the robustness of the three methods is assessed by a perturbation analysis and illustrated using ROC curves.
Resumo:
Global horizontal wavenumber kinetic energy spectra and spectral fluxes of rotational kinetic energy and enstrophy are computed for a range of vertical levels using a T799 ECMWF operational analysis. Above 250 hPa, the kinetic energy spectra exhibit a distinct break between steep and shallow spectral ranges, reminiscent of dual power-law spectra seen in aircraft data and high-resolution general circulation models. The break separates a large-scale ‘‘balanced’’ regime in which rotational flow strongly dominates divergent flow and a mesoscale ‘‘unbalanced’’ regime where divergent energy is comparable to or larger than rotational energy. Between 230 and 100 hPa, the spectral break shifts to larger scales (from n 5 60 to n 5 20, where n is spherical harmonic index) as the balanced component of the flow preferentially decays. The location of the break remains fairly stable throughout the stratosphere. The spectral break in the analysis occurs at somewhat larger scales than the break seen in aircraft data. Nonlinear spectral fluxes defined for the rotational component of the flow maximize between about 300 and 200 hPa. Large-scale turbulence thus centers on the extratropical tropopause region, within which there are two distinct mechanisms of upscale energy transfer: eddy–eddy interactions sourcing the transient energy peak in synoptic scales, and zonal mean–eddy interactions forcing the zonal flow. A well-defined downscale enstrophy flux is clearly evident at these altitudes. In the stratosphere, the transient energy peak moves to planetary scales and zonal mean–eddy interactions become dominant.
Resumo:
A previous case study found a relationship between high spectral width measured by the CUTLASS Finland HF radar and elevated electron temperatures observed by the EISCAT and ESR incoherent scatter radars in the postmidnight sector of magnetic local time. This paper expands that work by briefly re-examining that interval and looking in depth at two further case studies. In all three cases a region of high HF spectral width (>200 ms−1) exists poleward of a region of low HF spectral width (<200 ms^{−1}). Each case, however, occurs under quite different geomagnetic conditions. The original case study occurred during an interval with no observed electrojet activity, the second study during a transition from quiet to active conditions with a clear band of ion frictional heating indicating the location of the flow reversal boundary, and the third during an isolated substorm. These case studies indicate that the relationship between elevated electron temperature and high HF radar spectral width appears on closed field lines after 03:00 magnetic local time (MLT) on the nightside. It is not clear whether the same relationship would hold on open field lines, since our analysis of this relationship is restricted in latitude. We find two important properties of high spectral width data on the nightside. Firstly the high spectral width values occur on both open and closed field lines, and secondly that the power spectra which exhibit high widths are both single-peak and multiple-peak. In general the regions of high spectral width (>200 ms−1) have more multiple-peak spectra than the regions of low spectral widths whilst still maintaining a majority of single-peak spectra. We also find that the region of ion frictional heating is collocated with many multiplepeak HF spectra. Several mechanisms for the generation of high spectral width have been proposed which would produce multiple-peak spectra, these are discussed in relation to the data presented here. Since the regions of high spectral width are observed both on closed and open field lines the use of the boundary between low and high spectral width as an ionospheric proxy for the open/closed field line boundary is not a simple matter, if indeed it is possible at all.
Resumo:
A detailed view of Southern Hemisphere storm tracks is obtained based on the application of filtered variance and modern feature-tracking techniques to a wide range of 45-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data. It has been checked that the conclusions drawn in this study are valid even if data from only the satellite era are used. The emphasis of the paper is on the winter season, but results for the four seasons are also discussed. Both upper- and lower-tropospheric fields are used. The tracking analysis focuses on systems that last longer than 2 days and are mobile (move more than 1000 km). Many of the results support previous ideas about the storm tracks, but some new insights are also obtained. In the summer there is a rather circular, strong, deep high-latitude storm track. In winter the high-latitude storm track is more asymmetric with a spiral from the Atlantic and Indian Oceans in toward Antarctica and a subtropical jet–related lower-latitude storm track over the Pacific, again tending to spiral poleward. At all times of the year, maximum storm activity in the higher-latitude storm track is in the Atlantic and Indian Ocean regions. In the winter upper troposphere, the relative importance of, and interplay between, the subtropical and subpolar storm tracks is discussed. The genesis, lysis, and growth rate of lower-tropospheric winter cyclones together lead to a vivid picture of their behavior that is summarized as a set of overlapping plates, each composed of cyclone life cycles. Systems in each plate appear to feed the genesis in the next plate through downstream development in the upper-troposphere spiral storm track. In the lee of the Andes in South America, there is cyclogenesis associated with the subtropical jet and also, poleward of this, cyclogenesis largely associated with system decay on the upslope and regeneration on the downslope. The genesis and lysis of cyclones and anticyclones have a definite spatial relationship with each other and with the Andes. At 500 hPa, their relative longitudinal positions are consistent with vortex-stretching ideas for simple flow over a large-scale mountain. Cyclonic systems near Antarctica have generally spiraled in from lower latitudes. However, cyclogenesis associated with mobile cyclones occurs around the Antarctic coast with an interesting genesis maximum over the sea ice near 150°E. The South Pacific storm track emerges clearly from the tracking as a coherent deep feature spiraling from Australia to southern South America. A feature of the summer season is the genesis of eastward-moving cyclonic systems near the tropic of Capricorn off Brazil, in the central Pacific and, to a lesser extent, off Madagascar, followed by movement along the southwest flanks of the subtropical anticyclones and contribution to the “convergence zone” cloud bands seen in these regions.
Resumo:
For the tracking of extrema associated with weather systems to be applied to a broad range of fields it is necessary to remove a background field that represents the slowly varying, large spatial scales. The sensitivity of the tracking analysis to the form of background field removed is explored for the Northern Hemisphere winter storm tracks for three contrasting fields from an integration of the U. K. Met Office's (UKMO) Hadley Centre Climate Model (HadAM3). Several methods are explored for the removal of a background field from the simple subtraction of the climatology, to the more sophisticated removal of the planetary scales. Two temporal filters are also considered in the form of a 2-6-day Lanczos filter and a 20-day high-pass Fourier filter. The analysis indicates that the simple subtraction of the climatology tends to change the nature of the systems to the extent that there is a redistribution of the systems relative to the climatological background resulting in very similar statistical distributions for both positive and negative anomalies. The optimal planetary wave filter removes total wavenumbers less than or equal to a number in the range 5-7, resulting in distributions more easily related to particular types of weather system. For the temporal filters the 2-6-day bandpass filter is found to have a detrimental impact on the individual weather systems, resulting in the storm tracks having a weak waveguide type of behavior. The 20-day high-pass temporal filter is less aggressive than the 2-6-day filter and produces results falling between those of the climatological and 2-6-day filters.
Resumo:
Extratropical and tropical transient storm tracks are investigated from the perspective of feature tracking in the ECHAM5 coupled climate model for the current and a future climate scenario. The atmosphere-only part of the model, forced by observed boundary conditions, produces results that agree well with analyses from the 40-yr ECMWF Re-Analysis (ERA-40), including the distribution of storms as a function of maximum intensity. This provides the authors with confidence in the use of the model for the climate change experiments. The statistical distribution of storm intensities is virtually preserved under climate change using the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario until the end of this century. There are no indications in this study of more intense storms in the future climate, either in the Tropics or extratropics, but rather a minor reduction in the number of weaker storms. However, significant changes occur on a regional basis in the location and intensity of storm tracks. There is a clear poleward shift in the Southern Hemisphere with consequences of reduced precipitation for several areas, including southern Australia. Changes in the Northern Hemisphere are less distinct, but there are also indications of a poleward shift, a weakening of the Mediterranean storm track, and a strengthening of the storm track north of the British Isles. The tropical storm tracks undergo considerable changes including a weakening in the Atlantic sector and a strengthening and equatorward shift in the eastern Pacific. It is suggested that some of the changes, in particular the tropical ones, are due to an SST warming maximum in the eastern Pacific. The shift in the extratropical storm tracks is shown to be associated with changes in the zonal SST gradient in particular for the Southern Hemisphere.