19 resultados para spatial variables
em CentAUR: Central Archive University of Reading - UK
Resumo:
Land-use changes can alter the spatial population structure of plant species, which may in turn affect the attractiveness of flower aggregations to different groups of pollinators at different spatial scales. To assess how pollinators respond to spatial heterogeneity of plant distributions and whether honeybees affect visitation by other pollinators we used an extensive data set comprising ten plant species and their flower visitors from five European countries. In particular we tested the hypothesis that the composition of the flower visitor community in terms of visitation frequencies by different pollinator groups were affected by the spatial plant population structure, viz. area and density measures, at a within-population (‘patch’) and among-population (‘population’) scale. We found that patch area and population density were the spatial variables that best explained the variation in visitation frequencies within the pollinator community. Honeybees had higher visitation frequencies in larger patches, while bumblebees and hoverflies had higher visitation frequencies in sparser populations. Solitary bees had higher visitation frequencies in sparser populations and smaller patches. We also tested the hypothesis that honeybees affect the composition of the pollinator community by altering the visitation frequencies of other groups of pollinators. There was a positive relationship between visitation frequencies of honeybees and bumblebees, while the relationship with hoverflies and solitary bees varied (positive, negative and no relationship) depending on the plant species under study. The overall conclusion is that the spatial structure of plant populations affects different groups of pollinators in contrasting ways at both the local (‘patch’) and the larger (‘population’) scales and, that honeybees affect the flower visitation by other pollinator groups in various ways, depending on the plant species under study. These contrasting responses emphasize the need to investigate the entire pollinator community when the effects of landscape change on plant–pollinator interactions are studied.
Resumo:
Remote sensing can potentially provide information useful in improving pollution transport modelling in agricultural catchments. Realisation of this potential will depend on the availability of the raw data, development of information extraction techniques, and the impact of the assimilation of the derived information into models. High spatial resolution hyperspectral imagery of a farm near Hereford, UK is analysed. A technique is described to automatically identify the soil and vegetation endmembers within a field, enabling vegetation fractional cover estimation. The aerially-acquired laser altimetry is used to produce digital elevation models of the site. At the subfield scale the hypothesis that higher resolution topography will make a substantial difference to contaminant transport is tested using the AGricultural Non-Point Source (AGNPS) model. Slope aspect and direction information are extracted from the topography at different resolutions to study the effects on soil erosion, deposition, runoff and nutrient losses. Field-scale models are often used to model drainage water, nitrate and runoff/sediment loss, but the demanding input data requirements make scaling up to catchment level difficult. By determining the input range of spatial variables gathered from EO data, and comparing the response of models to the range of variation measured, the critical model inputs can be identified. Response surfaces to variation in these inputs constrain uncertainty in model predictions and are presented. Although optical earth observation analysis can provide fractional vegetation cover, cloud cover and semi-random weather patterns can hinder data acquisition in Northern Europe. A Spring and Autumn cloud cover analysis is carried out over seven UK sites close to agricultural districts, using historic satellite image metadata, climate modelling and historic ground weather observations. Results are assessed in terms of probability of acquisition probability and implications for future earth observation missions. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Forgetting immediate physical reality and having awareness of one�s location in the simulated world is critical to enjoyment and performance in virtual environments be it an interactive 3D game such as Quake or an online virtual 3d community space such as Second Life. Answer to the question "where am I?" at two levels, whether the locus is in the immediate real world as opposed to the virtual world and whether one is aware of the spatial co-ordinates of that locus, hold the key to any virtual 3D experience. While 3D environments, especially virtual environments and their impact on spatial comprehension has been studied in disciplines such as architecture, it is difficult to determine the relative contributions of specific attributes such as screen size or stereoscopy towards spatial comprehension since most of them treat the technology as monolith (box-centered). Using a variable-centered approach put forth by Nass and Mason (1990) which breaks down the technology into its component variables and their corresponding values as its theoretical basis, this paper looks at the contributions of five variables (Stereoscopy, screen size, field of view, level of realism and level of detail) common to most virtual environments on spatial comprehension and presence. The variable centered approach can be daunting as the increase in the number of variables can exponentially increase the number of conditions and resources required. We overcome this drawback posed by adoption of such a theoretical approach by the use of a fractional factorial design for the experiment. This study has completed the first wave of data collection and starting the next phase in January 2007 and expected to complete by February 2007. Theoretical and practical implications of the study are discussed.
Resumo:
The soil microflora is very heterogeneous in its spatial distribution. The origins of this heterogeneity and its significance for soil function are not well understood. A problem for understanding spatial variation better is the assumption of statistical stationarity that is made in most of the statistical methods used to assess it. These assumptions are made explicit in geostatistical methods that have been increasingly used by soil biologists in recent years. Geostatistical methods are powerful, particularly for local prediction, but they require the assumption that the variability of a property of interest is spatially uniform, which is not always plausible given what is known about the complexity of the soil microflora and the soil environment. We have used the wavelet transform, a relatively new innovation in mathematical analysis, to investigate the spatial variation of abundance of Azotobacter in the soil of a typical agricultural landscape. The wavelet transform entails no assumptions of stationarity and is well suited to the analysis of variables that show intermittent or transient features at different spatial scales. In this study, we computed cross-variograms of Azotobacter abundance with the pH, water content and loss on ignition of the soil. These revealed scale-dependent covariation in all cases. The wavelet transform also showed that the correlation of Azotobacter abundance with all three soil properties depended on spatial scale, the correlation generally increased with spatial scale and was only significantly different from zero at some scales. However, the wavelet analysis also allowed us to show how the correlation changed across the landscape. For example, at one scale Azotobacter abundance was strongly correlated with pH in part of the transect, and not with soil water content, but this was reversed elsewhere on the transect. The results show how scale-dependent variation of potentially limiting environmental factors can induce a complex spatial pattern of abundance in a soil organism. The geostatistical methods that we used here make assumptions that are not consistent with the spatial changes in the covariation of these properties that our wavelet analysis has shown. This suggests that the wavelet transform is a powerful tool for future investigation of the spatial structure and function of soil biota. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The precision farmer wants to manage the variation in soil nutrient status continuously, which requires reliable predictions at places between sampling sites. Ordinary kriging can be used for prediction if the data are spatially dependent and there is a suitable variogram model. However, even if data are spatially correlated, there are often few soil sampling sites in relation to the area to be managed. If intensive ancillary data are available and these are coregionalized with the sparse soil data, they could be used to increase the accuracy of predictions of the soil properties by methods such as cokriging, kriging with external drift and regression kriging. This paper compares the accuracy of predictions of the plant available N properties (mineral N and potentially available N) for two arable fields in Bedfordshire, United Kingdom, from ordinary kriging, cokriging, kriging with external drift and regression kriging. For the last three, intensive elevation data were used with the soil data. The mean squared errors of prediction from these methods of kriging were determined at validation sites where the values were known. Kriging with external drift resulted in the smallest mean squared error for two of the three properties examined, and cokriging for the other. The results suggest that the use of intensive ancillary data can increase the accuracy of predictions of soil properties in arable fields provided that the variables are related spatially. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Long-term monitoring of forest soils as part of a pan-European network to detect environmental change depends on an accurate determination of the mean of the soil properties at each monitoring event. Forest soil is known to be very variable spatially, however. A study was undertaken to explore and quantify this variability at three forest monitoring plots in Britain. Detailed soil sampling was carried out, and the data from the chemical analyses were analysed by classical statistics and geostatistics. An analysis of variance showed that there were no consistent effects from the sample sites in relation to the position of the trees. The variogram analysis showed that there was spatial dependence at each site for several variables and some varied in an apparently periodic way. An optimal sampling analysis based on the multivariate variogram for each site suggested that a bulked sample from 36 cores would reduce error to an acceptable level. Future sampling should be designed so that it neither targets nor avoids trees and disturbed ground. This can be achieved best by using a stratified random sampling design.
Resumo:
The development of genetically modified (GM) crops has led the European Union (EU) to put forward the concept of 'coexistence' to give fanners the freedom to plant both conventional and GM varieties. Should a premium for non-GM varieties emerge in the market, 'contamination' by GM pollen would generate a negative externality to conventional growers. It is therefore important to assess the effect of different 'policy variables'on the magnitude of the externality to identify suitable policies to manage coexistence. In this paper, taking GM herbicide tolerant oilseed rape as a model crop, we start from the model developed in Ceddia et al. [Ceddia, M.G., Bartlett, M., Perrings, C., 2007. Landscape gene flow, coexistence and threshold effect: the case of genetically modified herbicide tolerant oilseed rape (Brassica napus). Ecol. Modell. 205, pp. 169-180] use a Monte Carlo experiment to generate data and then estimate the effect of the number of GM and conventional fields, width of buffer areas and the degree of spatial aggregation (i.e. the 'policy variables') on the magnitude of the externality at the landscape level. To represent realistic conditions in agricultural production, we assume that detection of GM material in conventional produce might occur at the field level (no grain mixing occurs) or at the silos level (where grain mixing from different fields in the landscape occurs). In the former case, the magnitude of the externality will depend on the number of conventional fields with average transgenic presence above a certain threshold. In the latter case, the magnitude of the externality will depend on whether the average transgenic presence across all conventional fields exceeds the threshold. In order to quantify the effect of the relevant' policy variables', we compute the marginal effects and the elasticities. Our results show that when relying on marginal effects to assess the impact of the different 'policy variables', spatial aggregation is far more important when transgenic material is detected at field level, corroborating previous research. However, when elasticity is used, the effectiveness of spatial aggregation in reducing the externality is almost identical whether detection occurs at field level or at silos level. Our results show also that the area planted with GM is the most important 'policy variable' in affecting the externality to conventional growers and that buffer areas on conventional fields are more effective than those on GM fields. The implications of the results for the coexistence policies in the EU are discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A cross-sectional study of serum antibody responses of cattle to tick-borne pathogens (Theileria parva, Theileria mutans, Anaplasma marginale, Babesia bigemina and Babesia bovis) was conducted on smallholder dairy farms in Tanga and Iringa Regions of Tanzania. Seroprevalence was highest for T. parva (48% in Iringa and 23% in Tanga) and B. bigemina (43% in Iringa and 27% in Tanga) and lowest for B. bovis (12% in Iringa and 6% in Tanga). We use spatial and non-spatial models, fitted using classical and Bayesian methods, to explore risk factors associated with seroprevalence. These include both fixed effects (age, grazing history and breeding status) and random effects (farm and local spatial effects). In both regions, seroprevalence for all tick-borne pathogens increased significantly with age. Animals pasture grazed in the 3 months prior to the start of the sampling period were significantly more likely to be seropositive for Theileria spp. and Babesia spp. Pasture grazed animals were more likely to be seropositive than zero-grazed animals for A. marginale, but the relationship was weaker than that observed for the other four pathogens. This study did not detect any significant differences in seroprevalence associated with other management-related variables, including the method or frequency of acaricide application. After adjusting for age, there was weak evidence of localised (< 5 km) spatial correlation in exposure to some of the tick borne diseases. However, this was small compared with the 'farm-effect', suggesting that risk factors specific to the farm were more important than those common to the local neighbourhood. Many animals were seropositive for more than one pathogen and the correlation between exposure to the different pathogens remained after adjusting for the identified risk factors. Identifying the determinants of exposure to multiple tick-borne pathogens and characterizing local variation in risk will assist in the development of more effective control strategies for smallholder dairy farms. (c) 2005 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Pollen-mediated gene flow is one of the main concerns associated with the introduction of genetically modified (GM) crops. Should a premium for non-GM varieties emerge on the market, ‘contamination’ by GM pollen would generate a revenue loss for growers of non-GM varieties. This paper analyses the problem of pollen-mediated gene flow as a particular type of production externality. The model, although simple, provides useful insights into coexistence policies. Following on from this and taking GM herbicide-tolerant oilseed rape (Brassica napus) as a model crop, a Monte Carlo simulation is used to generate data and then estimate the effect of several important policy variables (including width of buffer zones and spatial aggregation) on the magnitude of the externality associated with pollen-mediated gene flow.
Resumo:
Variational data assimilation systems for numerical weather prediction rely on a transformation of model variables to a set of control variables that are assumed to be uncorrelated. Most implementations of this transformation are based on the assumption that the balanced part of the flow can be represented by the vorticity. However, this assumption is likely to break down in dynamical regimes characterized by low Burger number. It has recently been proposed that a variable transformation based on potential vorticity should lead to control variables that are uncorrelated over a wider range of regimes. In this paper we test the assumption that a transform based on vorticity and one based on potential vorticity produce an uncorrelated set of control variables. Using a shallow-water model we calculate the correlations between the transformed variables in the different methods. We show that the control variables resulting from a vorticity-based transformation may retain large correlations in some dynamical regimes, whereas a potential vorticity based transformation successfully produces a set of uncorrelated control variables. Calculations of spatial correlations show that the benefit of the potential vorticity transformation is linked to its ability to capture more accurately the balanced component of the flow.
Resumo:
The spatial variability of soil nitrogen (N) mineralisation has not been extensively studied, which limits our capacity to make N fertiliser recommendations. Even less attention has been paid to the scale-dependence of the variation. The objective of this research was to investigate the scale-dependence of variation of mineral N (MinN, N–NO3− plus N–NH4+) at within-field scales. The study was based on the spatial dependence of the labile fractions of SOM, the key fractions for N mineralisation. Soils were sampled in an unbalanced nested design in a 4-ha arable field to examine the distribution of the variation of SOM at 30, 10, 1, and 0.12 m. Organic matter in free and intra-aggregate light fractions (FLF and IALF) was extracted by physical fractionation. The variation occurred entirely within 0.12 m for FLF and at 10 m for IALF. A subsequent sampling on a 5-m grid was undertaken to link the status of the SOM fractions to MinN, which showed uncorrelated spatial dependence. A uniform application of N fertiliser would be suitable in this case. The failure of SOM fractions to identify any spatial dependence of MinN suggests that other soil variables, or crop indicators, should be tested to see if they can identify different N supply areas within the field for a more efficient and environmentally friendly N management.
Resumo:
Much of mainstream economic analysis assumes that markets adjust smoothly, through prices, to changes in economic conditions. However, this is not necessarily the case for local housing markets, whose spatial structures may exhibit persistence, so that conditions may not be those most suited to the requirements of modern-day living. Persistence can arise from the existence of transaction costs. The paper tests the proposition that housing markets in Inner London exhibit a degree of path dependence, through the construction of a three-equation model, and examines the impact of variables constructed for the 19th and early 20th centuries on modern house prices. These include 19th-century social structures, slum clearance programmes and the 1908 underground network. Each is found to be significant. The tests require the construction of novel historical datasets, which are also described in the paper.
Resumo:
The relative contributions of five variables (Stereoscopy, screen size, field of view, level of realism and level of detail) of virtual reality systems on spatial comprehension and presence are evaluated here. Using a variable-centered approach instead of an object-centric view as its theoretical basis, the contributions of these five variables and their two-way interactions are estimated through a 25-1 fractional factorial experiment (screening design) of resolution V with 84 subjects. The experiment design, procedure, measures used, creation of scales and indices, results of statistical analysis, their meaning and agenda for future research are elaborated.