2 resultados para solvolysis

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the reaction of di-2-pyridyl ketone (dpk) with Na(2)[PdCl(4)] in alcoholic media, the C=O fragment of dpk undergoes facile solvolysis and the transformed di-2-pyridyl ketone (dpk(ROH), R = Me or H) binds to palladium as NN-donor. When the reaction is carried out in refluxing methanol, a mono-complex of type [Pd(dpk(MeOH))Cl(2)] is obtained. A similar reaction in ethanol affords a bis-complex of type [Pd(dpk(ROH))(2)]Cl(2). Structure of both the complexes have been determined by X-ray crystallography. In acetonitrile solution the [pd(dpk(MeOH))Cl(2)] and [pd(dpk(ROH))(2)]Cl(2) complexes show intense absorptions in the visible and ultraviolet region, origin of which has been probed through uvr calculations. These two palladium complexes are found to be efficient catalysts for Suzuki cross-coupling reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 2e reduced anion [Mn(CO)3(iPr-DAB)]− (DAB = 1,4- diazabuta-1,3-diene, iPr = isopropyl) was shown to convert in the presence of CO2 and a small amount of water to the unstable complex [Mn(CO)3(iPr-DAB)(η1-OCO2H)] (OCO2H− = unidentate bicarbonate) that was further reductively transformed to give a stable catalytic intermediate denoted as X2, showing νs(OCO) 1672 and 1646 (sh) cm−1. The subsequent cathodic shift by ca. 650 mV in comparison to the single 2e cathodic wave of the parent [Mn(CO)3(iPr-DAB)Br] triggers the reduction of intermediate X2 and catalytic activity converting CO2 to CO. Infrared spectroelectrochemistry has revealed that the high excess of CO generated at the cathode leads to the conversion of [Mn(CO)3(iPr-DAB)]− to inactive [Mn(CO)5]−. In contrast, the five-coordinate anion [Mn(CO)3(pTol-DAB)]−(pTol = 4-tolyl) is completely inert toward both CO2 and H2O (solvolysis). This detailed spectroelectrochemical study is a further contribution to the development of sustainable electro- and photoelectrocatalysts of CO2 reduction based on abundant first-row transition metals, in particular manganese.