75 resultados para soil surface

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The s–x model of microwave emission from soil and vegetation layers is widely used to estimate soil moisture content from passive microwave observations. Its application to prospective satellite-based observations aggregating several thousand square kilometres requires understanding of the effects of scene heterogeneity. The effects of heterogeneity in soil surface roughness, soil moisture, water area and vegetation density on the retrieval of soil moisture from simulated single- and multi-angle observing systems were tested. Uncertainty in water area proved the most serious problem for both systems, causing errors of a few percent in soil moisture retrieval. Single-angle retrieval was largely unaffected by the other factors studied here. Multiple-angle retrievals errors around one percent arose from heterogeneity in either soil roughness or soil moisture. Errors of a few percent were caused by vegetation heterogeneity. A simple extension of the model vegetation representation was shown to reduce this error substantially for scenes containing a range of vegetation types.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For vegetated surfaces, calculation of soil heat flux, G, with the Exact or Analytical method requires a harmonic analysis of below-canopy soil surface temperature, to obtain the shape of the diurnal course of G. When determining G with remote sensing methods, only composite (vegetation plus soil) radiometric brightness temperature is available. This paper presents a simple equation that relates the sum of the harmonic terms derived for the composite radiometric surface temperature to that of belowcanopy soil surface temperature. The thermal inertia, Gamma(,) for which a simple equation has been presented in a companion paper, paper I, is used to set the magnitude of G. To assess the success of the method proposed in this paper for the estimation of the diurnal shape of G, a comparison was made between 'remote' and in situ calculated values from described field sites. This indicated that the proposed method was suitable for the estimation of the shape of G for a variety of vegetation types and densities. The approach outlined in paper I, to obtain Gamma, was then combined with the estimated harmonic terms to predict estimates of G, which were compared to values predicted by empirical remote methods found in the literature. This indicated that the method proposed in the combination of papers I and II gave reliable estimates of G, which, in comparison to the other methods, resulted in more realistic predictions for vegetated surfaces. This set of equations can also be used for bare and sparsely vegetated soils, making it a universally applicable method. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A reduction in the numbers of macroinvertebrates present in soil may have a negative effect on soil structure, infiltration rates, and gas exchanges. Soil pollution by metal is known to have a detrimental effect on soil macrofauna. The aim of the present study was to evaluate (1) direct and indirect effects of soil pollution on soil macroinvertebrate bioturbation and (2) effects of the two macroinvertebrate communities found in a polluted and a nonpolluted area (one supposed sensitive, the other tolerant to metals) on burrow systems parameters. Macroinvertebrate porosity was studied using X-ray tomography. Three-dimensional reconstructions and characterisation of the burrow system were obtained using image analysis. Results showed that metal pollution principally affected the spatial distribution of macropores (more macropores were found near the soil surface) and the shape of the burrow system (branching rate was higher in the polluted soil), whereas soil macroinvertebrate composition principally affects burrow density parameters (the number of burrows was higher for the sensitive macroinvertebrate community).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mineral and geochemical investigations were carried out on soil samples and fresh rock (trachytes) from two selected soil profiles (TM profile on leptic aluandic soils and TL profile on thapto aluandic-ferralsols) from Mount Bambouto to better understand geochemical processes and mineral paragenesis involved in the development of soils in this environment. In TM profile, the hydrated halloysites and goethite occur in the weathered saprolite boulders of BC horizon while dehydrated halloysite, gibbsite and goethite dominate the soils matrices of BC and A horizons. In TL profile, the dehydrated halloysites and goethite are the most abundant secondary minerals in the weathered saprolites of C and BC horizons while gibbsite, hematite and kaolinite occur in the soil matrices of BC, B and A horizons. The highest gibbsite content is in the platy nodules of B horizon. In both soil profiles, organo-metal complexes (most likely of AI and Fe) are present in the surface A horizon. Geochemically, between the fresh rock and the weathered saprolites in both soils, SiO2, K2O, CaO, Na2O and MgO contents decrease strongly while Fe2O3 and Al2O3 tend to accumulate. The molar ratio of SiO2/Al2O3 (Ki) and the sum of Ca, Mg, K and Na ions (TRB) also decreases abruptly between fresh rocks and the weathered saprolites, but increases significantly at the soil surface. The TM profile shows intense Al enrichment whereas the TL profile highlights enrichment in both AI and Fe as the weathering progresses upwards. Both soil profiles are enriched in Ni, Cu, Ba and Co and depleted in U, Th, Ta, Hf, Y, Sr, Pb, Zr and Zn relative to fresh rock. They also show a relatively low fractionation of the rare earth elements (REE: La, Nd, Sm, Eu, Tb, Yb and Lu), except for Ce which tends to be enriched in soils compared to CI chondrite. All these results give evidence of intense hydrolysis at soil deep in Mount Bambouto resulting in the formation of halloysite which progressively transforms into gibbsite and/or dehydrated halloysite. At the soil surface, the prominent pedogenetic process refers to andosolization with formation of organo-metal complexes. In TL profile, the presence of kaolinite in soil matrices BC and B horizons is consistent with ferralitization at soil deep. In conclusion, soil forming processes in Mount Bambouto are strongly influenced by local climate: (i) in the upper mountain (>2000 m), the fresh, misty and humid climate favors andosolization; whereas (ii) in the middle lands (1700-2000 m) with a relatively dry climate, both andosolization at the soil surface and ferralitization at soil deep act together. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The area of soil disturbed using a single tine is well documented. However, modern strip tillage implements using a tine and disc design have not been assessed in the UK or in mainland Europe. Using a strip tillage implement has potential benefits for European agriculture where economic returns and sustainability are key issues. Using a strip tillage system a narrow zone is cultivated leaving most of the straw residue on the soil surface. Small field plot experiments were undertaken on three soil types and the operating parameters of forward speed, tine depth and tine design were investigated together with measurements of seedbed tilth and crop emergence. The type of tine used was found to be the primary factor in achieving the required volume of disturbance within a narrow zone whilst maintaining an area of undisturbed soil with straw residue on the surface. The winged tine produced greater disturbance at a given depth compared with the knife tine. Increasing forward speed did not consistently increase the volume of disturbance. In a sandy clay loam the tilth created and emergence of sugar beet by strip tillage and ploughing were similar but on a sandy loam the strip tillage treatments generally gave a finer tilth but poorer emergence particularly at greater working depth.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The contribution of individual grain size fractions (2000–500, 500–250, 250–63, 63–2 and < 2 μm) to bulk soil surface area and reactivity is discussed with reference to mineralogical and oxalate and dithionite extractions data. The 63–2 μm fraction contributed up to 56% and 67% of bulk soil volume and BET surface area, respectively. Consideration of these observations and the mineralogy of this fraction suggest that the 63–2 μm fraction may be the most influential for the release of elements via mineral dissolution in the bulk soil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distribution of endemic goitre in England and Wales was compared with the distribution of environmental iodine (atmospheric deposition, soil, surface water). Despite a very clear goitre belt through the west of England and Wales there was no patterning in the environmental iodine distribution. A clear seasonal variation in depositional iodine exists, with an unusually high concentration of iodine in March 1997. The temporal variation in iodine concentration is determined at the monthly and not the annual level. The presence of endemic goitre is no indicator of how iodine is distributed in the environment or vice versa!

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rate and scale of human-driven changes can exert profound impacts on ecosystems, the species that make them up and the services they provide that sustain humanity. Given the speed at which these changes are occurring, one of society's major challenges is to coexist within ecosystems and to manage ecosystem services in a sustainable way. The effect of possible scenarios of global change on ecosystem services can be explored using ecosystem models. Such models should adequately represent ecosystem processes above and below the soil surface (aboveground and belowground) and the interactions between them. We explore possibilities to include such interactions into ecosystem models at scales that range from global to local. At the regional to global scale we suggest to expand the plant functional type concept (aggregating plants into groups according to their physiological attributes) to include functional types of aboveground-belowground interactions. At the scale of discrete plant communities, process-based and organism-oriented models could be combined into "hybrid approaches" that include organism-oriented mechanistic representation of a limited number of trophic interactions in an otherwise process - oriented approach. Under global change the density and activity of organisms determining the processes may change non-linearly and therefore explicit knowledge of the organisms and their responses should ideally be included. At the individual plant scale a common organism-based conceptual model of aboveground-belowground interactions has emerged. This conceptual model facilitates the formulation of research questions to guide experiments aiming to identify patterns that are common within, but differ between, ecosystem types and biomes. Such experiments inform modelling approaches at larger scales. Future ecosystem models should better include this evolving knowledge of common patterns of aboveground-belowground interactions. Improved ecosystem models are necessary toots to reduce the uncertainty in the information that assists us in the sustainable management of our environment in a changing world. (C) 2004 Elsevier GmbH. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A primary objective of agri-environment schemes is the conservation of biodiversity; in addition to increasing the value of farmland for wildlife, these schemes also aim to restore natural ecosystem functioning. The management of scheme options can influence their value for delivering ecosystem services by modifying the composition of floral and faunal communities. This study examines the impact of an agri-environment scheme prescription on ecosystem functioning by testing the hypothesis that vegetation management influences decomposition rates in grassy arable field margins. The effects of two vegetation management practices in arable field margins - cutting and soil disturbance (scarification) - on litter decomposition were compared using a litterbag experimental approach in early April 2006. Bags had either small mesh designed to restrict access to soil macrofauna, or large mesh that would allow macrofauna to enter. Bags were positioned on the soil surface or inserted into the soil in cut and scarified margins, retrieved after 44, 103 and 250 days and the amount of litter mass remaining was calculated. Litter loss from the litterbags with large mesh was greater than from the small mesh bags, providing evidence that soil macrofauna accelerate rates of litter decomposition. In the large mesh bags, the proportion of litter remaining in bags above and belowground in the cut plots was similar, while in the scarified plots, there was significantly more litter left in the aboveground bags than in the belowground bags. This loss of balance between decomposition rates above and belowground in scarified margins may have implications for the development and maintenance of grassy arable field margins by influencing nutrient availability for plant communities. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The management of straw residue can be a concern in non-inversion tillage systems where straw tends to be incorporated at shallow depths or left on the soil surface. This can lead to poor crop establishment because straw residue can impede or hinder crop emergence and growth. Small container-based experiments were undertaken using varying amounts of wheat straw residue either incorporated or placed oil the soil surface. The effects on (lays to seedling emergence, percentage emergence, seedling dry-weight and soil temperature using sugar beet and oilseed rape were investigated because these crops often follow wheat in a cropping sequence. The position of the straw residue was found to be the primary factor in reducing crop emergence and growth. Increasing the amount of straw residue (from 3.3 t ha(-1) to 6.7 t ha(-1)) did not show any consistent trends in reducing crop emergence or growth. However, in some instances, results indicated that an interaction between the position and the amount of straw residue Occurred particularly when the straw and seed was placed on the soil surface. Straw placed on the soil surface significantly reduced mean day-time soil temperature by approximately 2.5 degrees C compared to no residue. When the seed and straw was placed on the soil Surface a lack of seed-to-soil contact caused a reduction in emergence by approximately 30% because of the restriction in available moisture that limited the ability for seed imbibition. This trend was reversed when the seed was placed in the soil, but with straw residue still on the soil surface, because the surface straw was likely to reduce moisture evaporation and improved seed-to-soil contact that led to rapid emergence. In general, when straw was mixed in or placed on the soil surface along with the seed, sugar beet and oilseed rape emergence and early growth biomass was significantly restricted by approximately 50% compared to no residue. The consequences of placing seed with or near to straw residue have been shown to cause a restriction in crop establishment. In both oilseed tape and sugar beet, this could lead to a reduction in final crop densities, poor, uneven growth and potentially lower yields that could lower financial margins. Therefore, if farmers are planning to use non-inversion tillage methods for crop establishment, the management and removal of straw residue from near or above the seed is considered important for successful crop establishment. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With uncertainty concerning the future of set-aside, over-wintering stubble is an attractive management option within the agri-environment scheme. Over-wintering stubbles could be included as part of rotational set-aside, benefiting farmland biodiversity. However, there is little research on managing stubbles to maximise weed seed loss, so farmers may be reluctant to adopt this option for fear of increased weed infestation. The purpose of this investigation is to develop effective management of over-wintering stubbles to minimise pernicious grass weeds in sequential crops, whilst maintaining beneficial species diversity. Research has focused on four annual grass-weeds (Alopecurus myosuroides, Anisantha sterilis, Bromus commutatus and Lolium multiflorum) of increased occurrence and/or resistance to herbicides. Hitherto, work has concentrated on the effects of stubble manipulation on weed seed germination and mortality, in particular by straw spreading or removal after harvest. The dynamics of artificially inoculated weed populations were monitored from harvest until early spring. Results obtained indicate that where straw is retained on the soil surface, it provides a favourable microclimate for seed depletion of Anisantha sterilis and Bromus commutatus through germination. Conversely, greater depletion of Alopecurus myosuroides and Lolium multiflorum seed occurred from stubbles in which a straw layer was absent. Seed recovery work provided evidence that most seeds remaining ungerminated throughout the trial period were still viable, but a large proportion of the seeds sown were unaccounted for. As these species are not generally favoured as a food source, the as yet unknown fate of these seeds has implications for subsequent grass-weed infestations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The introduction of earthworms into soils contaminated with metals and metalloids has been suggested to aid restoration practices. Eisenia veneta (epigeic), Lumbricus terrestris (anecic) and Allolobophora chlorotica (endogeic) earthworms were cultivated in columns containing 900 g soil with 1130, 345, 113 and 131 mg kg1 of As, Cu, Pb and Zn, respectively, for up to 112 days, in parallel with earthworm-free columns. Leachate was produced by pouring water on the soil surface to saturate the soil and generate downflow. Ryegrass was grown on the top of columns to assess metal uptake into biota. Different ecological groups affected metals in the same way by increasing concentrations and free ion activities in leachate, but anecic L. terrestris had the greatest effect by increasing leachate concentrations of As by 267%, Cu by 393%, Pb by 190%, and Zn by 429% compared to earthworm-free columns. Ryegrass grown in earthworm-bearing soil accumulated more metal and the soil microbial community exhibited greater stress. Results are consistent with earthworm enhanced degradation of organic matter leading to release of organically bound elements. The degradation of organic matter also releases organic acids which decrease the soil pH. The earthworms do not appear to carry out a unique process, but increase the rate of a process that is already occurring. The impact of earthworms on metal mobility and availability should therefore be considered when inoculating earthworms into contaminated soils as new pathways to receptors may be created or the flow of metals and metalloids to receptors may be elevated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the increasing frequency and magnitude of warmer days during the summer in the UK, bedding plants which were a traditional part of the urban green landscape are perceived as unsustainable and water-demanding. During recent summers when bans on irrigation have been imposed, use and sales of bedding plants have dropped dramatically having a negative financial impact on the nursery industry. Retaining bedding species as a feature in public and even private spaces in future may be conditional on them being managed in a manner that minimises their water use. Using Petunia x hybrida ‘Hurrah White’ we aimed to discover which irrigation approach was the most efficient for maintaining plants’ ornamental quality (flower numbers, size and longevity), shoot and root growth under water deficit and periods of complete water withdrawal. Plants were grown from plugs for 51 days in wooden rhizotrons (0.35 m (h) x 0.1 m (w) x 0.065 m (d)); the rhizotrons’ front comprised clear Perspex which enabled us to monitor root growth closely. Irrigation treatments were: 1. watering with the amount which constitutes 50% of container capacity by conventional surface drip-irrigation (‘50% TOP’); 2. 50% as sub-irrigation at 10 cm depth (‘50% SUB’); 3. ‘split’ irrigation: 25% as surface drip- and 25% as sub-irrigation at 15 cm depth (‘25/25 SPLIT’); 4. 25% as conventional surface drip-irrigation (‘25% TOP’). Plants were irrigated daily at 18:00 apart from days 34-36 (inclusive) when water was withdrawn for all the treatments. Plants in ‘50% SUB’ had the most flowers and their size was comparable to that of ‘50% TOP’. Differences between treatments in other ‘quality’ parameters (height, shoot number) were biologically small. There was less root growth at deeper soil surface levels for ‘50% TOP’ which indicated that irrigation methods like ‘50% SUB’ and ‘25/25 SPLIT’ and stronger water deficits encouraged deeper root growth. It is suggested that sub-irrigation at 10 cm depth with water amounts of 50% container capacity would result in the most root growth with the maximum flowering for Petunia. Leaf stomatal conductance appeared to be most sensitive to the changes in substrate moisture content in the deepest part of the soil profile, where most roots were situated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New models for estimating bioaccumulation of persistent organic pollutants in the agricultural food chain were developed using recent improvements to plant uptake and cattle transfer models. One model named AgriSim was based on K OW regressions of bioaccumulation in plants and cattle, while the other was a steady-state mechanistic model, AgriCom. The two developed models and European Union System for the Evaluation of Substances (EUSES), as a benchmark, were applied to four reported food chain (soil/air-grass-cow-milk) scenarios to evaluate the performance of each model simulation against the observed data. The four scenarios considered were as follows: (1) polluted soil and air, (2) polluted soil, (3) highly polluted soil surface and polluted subsurface and (4) polluted soil and air at different mountain elevations. AgriCom reproduced observed milk bioaccumulation well for all four scenarios, as did AgriSim for scenarios 1 and 2, but EUSES only did this for scenario 1. The main causes of the deviation for EUSES and AgriSim were the lack of the soil-air-plant pathway and the ambient air-plant pathway, respectively. Based on the results, it is recommended that soil-air-plant and ambient air-plant pathway should be calculated separately and the K OW regression of transfer factor to milk used in EUSES be avoided. AgriCom satisfied the recommendations that led to the low residual errors between the simulated and the observed bioaccumulation in agricultural food chain for the four scenarios considered. It is therefore recommended that this model should be incorporated into regulatory exposure assessment tools. The model uncertainty of the three models should be noted since the simulated concentration in milk from 5th to 95th percentile of the uncertainty analysis often varied over two orders of magnitude. Using a measured value of soil organic carbon content was effective to reduce this uncertainty by one order of magnitude.