10 resultados para soft tissue properties
em CentAUR: Central Archive University of Reading - UK
Resumo:
Little is known about the effect of edaphic conditions on the decomposition of buried mammalian tissues. To address this, we set up a replicated incubation study with three fresh soils of contrasting pH: a Podsol (acidic), a Cambisol (neutral), and a Rendzina (alkaline), in which skeletal muscle tissue (SMT) of known mass was allowed to decompose. Our results clearly demonstrated that soil type had a considerable effect on the decomposition of SMT buried in soil. Differences in the rate of decomposition were up to three times greater in the Podsol compared with the Rendzina. The rate of microbial respiration was correlated to the rate of soft tissue loss, which suggests that the decomposition of SMT is dependent on the microbial community present in the soil. Decompositional by-products caused the pH of the immediate soil environment to change, becoming more alkaline at first, before acidifying. Our results demonstrate the need for greater consideration of soil type in future taphonomic studies.
Resumo:
A comparison of the models of Vitti et al. (2000, J. Anim. Sci. 78, 2706-2712) and Fernandez (1995c, Livest. Prod. Sci. 41, 255-261) was carried out using two data sets on growing pigs as input. The two models compared were based on similar basic principles, although their aims and calculations differed. The Vitti model employs the rate:state formalism and describes phosphorus (P) flow between four pools representing P content in gut, blood, bone and soft tissue in growing goats. The Fernandez model describes flow and fractional recirculation between P pools in gut, blood and bone in growing pigs. The results from both models showed similar trends for P absorption from gut to blood and net retention in bone with increasing P intake, with the exception of the 65 kg results from Date Set 2 calculated using the FernAndez model. Endogenous loss from blood back to gut increased faster with increasing P intake in the FernAndez than in the Vitti model for Data Set 1. However, for Data Set 2, endogenous loss increased with increasing P intake using the Vitti model, but decreased when calculated using the FernAndez model. Incorporation of P into bone was not influenced by intake in the FernAndez model, while in the Vitti model there was an increasing trend. The FernAndez model produced a pattern of decreasing resorption in bone with increasing P intake, with one of the data sets, which was not observed when using the Vitti model. The pigs maintained their P homeostasis in blood by regulation of P excretion in urine. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The present work presents a new method for activity extraction and reporting from video based on the aggregation of fuzzy relations. Trajectory clustering is first employed mainly to discover the points of entry and exit of mobiles appearing in the scene. In a second step, proximity relations between resulting clusters of detected mobiles and contextual elements from the scene are modeled employing fuzzy relations. These can then be aggregated employing typical soft-computing algebra. A clustering algorithm based on the transitive closure calculation of the fuzzy relations allows building the structure of the scene and characterises the ongoing different activities of the scene. Discovered activity zones can be reported as activity maps with different granularities thanks to the analysis of the transitive closure matrix. Taking advantage of the soft relation properties, activity zones and related activities can be labeled in a more human-like language. We present results obtained on real videos corresponding to apron monitoring in the Toulouse airport in France.
Resumo:
A great explanatory gap lies between the molecular pharmacology of psychoactive agents and the neurophysiological changes they induce, as recorded by neuroimaging modalities. Causally relating the cellular actions of psychoactive compounds to their influence on population activity is experimentally challenging. Recent developments in the dynamical modelling of neural tissue have attempted to span this explanatory gap between microscopic targets and their macroscopic neurophysiological effects via a range of biologically plausible dynamical models of cortical tissue. Such theoretical models allow exploration of neural dynamics, in particular their modification by drug action. The ability to theoretically bridge scales is due to a biologically plausible averaging of cortical tissue properties. In the resulting macroscopic neural field, individual neurons need not be explicitly represented (as in neural networks). The following paper aims to provide a non-technical introduction to the mean field population modelling of drug action and its recent successes in modelling anaesthesia.
Resumo:
This paper addresses the issue of activity understanding from video and its semantics-rich description. A novel approach is presented where activities are characterised and analysed at different resolutions. Semantic information is delivered according to the resolution at which the activity is observed. Furthermore, the multiresolution activity characterisation is exploited to detect abnormal activity. To achieve these system capabilities, the focus is given on context modelling by employing a soft computing-based algorithm which automatically enables the determination of the main activity zones of the observed scene by taking as input the trajectories of detected mobiles. Such areas are learnt at different resolutions (or granularities). In a second stage, learned zones are employed to extract people activities by relating mobile trajectories to the learned zones. In this way, the activity of a person can be summarised as the series of zones that the person has visited. Employing the inherent soft relation properties, the reported activities can be labelled with meaningful semantics. Depending on the granularity at which activity zones and mobile trajectories are considered, the semantic meaning of the activity shifts from broad interpretation to detailed description.Activity information at different resolutions is also employed to perform abnormal activity detection.
Resumo:
Biomaterials are often soft materials. There is now growing interest in designing, synthesizing and characterising soft materials that mimic the properties of biological materials such as tissue, proteins, DNA or cells. Research on biomimetic soft matter is therefore a developing theme with important emerging applications in biomedicine including tissue engineering, diagnostics, gene therapy, drug delivery and many others. There are also important basic science questions concerning the use of concepts from colloid and polymer science to understand the self-assembly of biomimetic soft materials. This issue of Soft Matter presents a selection of extremely topical articles on a diversity of biomimetic soft matter systems. I thank the contributors for this quite remarkable collection of papers, which report many fascinating discoveries and insights.
Resumo:
The human amniotic membrane (AM) is a tissue of fetal origin and has proven to be clinically useful as a biomaterial in the management of various ocular surface disorders including corneal stem cell transplantation. However, its success rate displays a degree of clinical unpredictability. We suggest that the measured variability inAMstiffness offers an explanation for the poor clinical reproducibility when it is used as a substrate for stem cell expansion and transplantation. Corneal epithelial stem cells were expanded upon AM samples possessing different mechanical stiffness. To investigate further the importance of biological substrate stiffness on cell phenotype we replaced AM with type I collagen gels of known stiffness. Substrate stiffness was measured using shear rheometry and surface topography was characterized using scanning electron microscopy and atomic force microscopy. The differentiation status of epithelial cells was examined using RT-PCR, immunohistochemistry and Western blotting. The level of corneal stem cell differentiation was increased in cells expanded upon AM with a high dynamic elastic shear modulus and cell expansion on type I collagen gels confirmed that the level of corneal epithelial stem cell differentiation was related to the substrate’s mechanical properties. In this paper we provide evidence to show that the preparatory method of AM for clinical use can affect its mechanical properties and that these measured differences can influence the level of differentiation within expanded corneal epithelial stem cells.
Resumo:
Whipping cream, skim milk powder and soft cheese were produced throughout the year. Whipping cream manufactured in spring and winter produced significantly higher overrun and better serum stability, and whipping time was related to buffering capacity of raw milk. Heat stability of reconstituted skim milk powder (RSMP) at 9% TS was greater in summer and autumn, and greater than 25% TS throughout the year. It was positively related to the protein content of raw milk, but negatively with fat. In contrast to other dairy products, no significant effect of season on the properties of soft cheese was found.