64 resultados para single-wave function

em CentAUR: Central Archive University of Reading - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

If the potential field due to the nuclei in the methane molecule is expanded in terms of a set of spherical harmonics about the carbon nucleus, only the terms involving s, f, and higher harmonic functions differ from zero in the equilibrium configuration. Wave functions have been calculated for the equilibrium configuration, first including only the spherically symmetric s term in the potential, and secondly including both the s and the f terms. In the first calculation the complete Hartree-Fock S.C.F. wave functions were determined; in the second calculation a variation method was used to determine the best form of the wave function involving f harmonics. The resulting wave functions and electron density functions are presented and discussed

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A simple, dynamically consistent model of mixing and transport in Rossby-wave critical layers is obtained from the well-known Stewartson–Warn–Warn (SWW) solution of Rossby-wave critical-layer theory. The SWW solution is thought to be a useful conceptual model of Rossby-wave breaking in the stratosphere. Chaotic advection in the model is a consequence of the interaction between a stationary and a transient Rossby wave. Mixing and transport are characterized separately with a number of quantitative diagnostics (e.g. mean-square dispersion, lobe dynamics, and spectral moments), and with particular emphasis on the dynamics of the tracer field itself. The parameter dependences of the diagnostics are examined: transport tends to increase monotonically with increasing perturbation amplitude whereas mixing does not. The robustness of the results is investigated by stochastically perturbing the transient-wave phase speed. The two-wave chaotic advection model is contrasted with a stochastic single-wave model. It is shown that the effects of chaotic advection cannot be captured by stochasticity alone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Actin reorganization is a tightly regulated process that co-ordinates complex cellular events, such as cell migration, chemotaxis, phagocytosis and adhesion, but the molecular mechanisms that underlie these processes are not well understood. SCAR (suppressor of cAMP receptor)/WAVE [WASP (Wiskott-Aldrich syndrome protein)-family verprolin homology protein] proteins are members of the conserved WASP family of cytoskeletal regulators, which play a critical role in actin dynamics by triggering Arp2/3 (actin-related protein 2/3)-dependent actin nucleation. SCAR/WAVEs are thought to be regulated by a pentameric complex which also contains Abi (Abl-interactor), Nap (Nck-associated protein), PIR121 (p53-inducible mRNA 121) and HSPC300 (haematopoietic stem progenitor cell 300), but the structural organization of the complex and the contribution of its individual components to the regulation of SCAR/WAVE function remain unclear. Additional features of SCAR/WAVE regulation are highlighted by the discovery of other interactors and distinct complexes. It is likely that the combinatorial assembly of different components of SCAR/WAVE complexes will prove to be vital for their roles at the centre of dynamic actin reorganization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The radar scattering properties of realistic aggregate snowflakes have been calculated using the Rayleigh-Gans theory. We find that the effect of the snowflake geometry on the scattering may be described in terms of a single universal function, which depends only on the overall shape of the aggregate and not the geometry or size of the pristine ice crystals which compose the flake. This function is well approximated by a simple analytic expression at small sizes; for larger snowflakes we fit a curve to Our numerical data. We then demonstrate how this allows a characteristic snowflake radius to be derived from dual wavelength radar measurements without knowledge of the pristine crystal size or habit, while at the same time showing that this detail is crucial to using such data to estimate ice water content. We also show that the 'effective radius'. characterizing the ratio of particle volume to projected area, cannot be inferred from dual wavelength radar data for aggregates. Finally, we consider the errors involved in approximating snowflakes by 'air-ice spheres', and show that for small enough aggregates the predicted dual wavelength ratio typically agrees to within a few percent, provided some care is taken in choosing the radius of the sphere and the dielectric constant of the air-ice mixture; at larger sizes the radar becomes more sensitive to particle shape, and the errors associated with the sphere model are found to increase accordingly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two errors in my paper “Wave functions for the methane molecule” [1] are corrected. They concern my f-harmonic approximation to the wave-function in the equilibrium configuration, for which the final expression for the wave function, the energy lowering, and the density function were all in error.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The search for Earth-like exoplanets, orbiting in the habitable zone of stars other than our Sun and showing biological activity, is one of the most exciting and challenging quests of the present time. Nulling interferometry from space, in the thermal infrared, appears as a promising candidate technique for the task of directly observing extra-solar planets. It has been studied for about 10 years by ESA and NASA in the framework of the Darwin and TPF-I missions respectively. Nevertheless, nulling interferometry in the thermal infrared remains a technological challenge at several levels. Among them, the development of the "modal filter" function is mandatory for the filtering of the wavefronts in adequacy with the objective of rejecting the central star flux to an efficiency of about 105. Modal filtering takes benefit of the capability of single-mode waveguides to transmit a single amplitude function, to eliminate virtually any perturbation of the interfering wavefronts, thus making very high rejection ratios possible. The modal filter may either be based on single-mode Integrated Optics (IO) and/or Fiber Optics. In this paper, we focus on IO, and more specifically on the progress of the on-going "Integrated Optics" activity of the European Space Agency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss the time evolution of the wave function which is the solution of a stochastic Schrödinger equation describing the dynamics of a free quantum particle subject to spontaneous localizations in space. We prove global existence and uniqueness of solutions. We observe that there exist three time regimes: the collapse regime, the classical regime and the diffusive regime. Concerning the latter, we assert that the general solution converges almost surely to a diffusing Gaussian wave function having a finite spread both in position as well as in momentum. This paper corrects and completes earlier works on this issue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the relation between so called continuous localization models—i.e. non-linear stochastic Schrödinger evolutions—and the discrete GRW-model of wave function collapse. The former can be understood as scaling limit of the GRW process. The proof relies on a stochastic Trotter formula, which is of interest in its own right. Our Trotter formula also allows to complement results on existence theory of stochastic Schrödinger evolutions by Holevo and Mora/Rebolledo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Fourier series can be used to describe periodic phenomena such as the one-dimensional crystal wave function. By the trigonometric treatements in Hückel theory it is shown that Hückel theory is a special case of Fourier series theory. Thus, the conjugated π system is in fact a periodic system. Therefore, it can be explained why such a simple theorem as Hückel theory can be so powerful in organic chemistry. Although it only considers the immediate neighboring interactions, it implicitly takes account of the periodicity in the complete picture where all the interactions are considered. Furthermore, the success of the trigonometric methods in Hückel theory is not accidental, as it based on the fact that Hückel theory is a specific example of the more general method of Fourier series expansion. It is also important for education purposes to expand a specific approach such as Hückel theory into a more general method such as Fourier series expansion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel statistic for local wave amplitude of the 500-hPa geopotential height field is introduced. The statistic uses a Hilbert transform to define a longitudinal wave envelope and dynamical latitude weighting to define the latitudes of interest. Here it is used to detect the existence, or otherwise, of multimodality in its distribution function. The empirical distribution function for the 1960-2000 period is close to a Weibull distribution with shape parameters between 2 and 3. There is substantial interdecadal variability but no apparent local multimodality or bimodality. The zonally averaged wave amplitude, akin to the more usual wave amplitude index, is close to being normally distributed. This is consistent with the central limit theorem, which applies to the construction of the wave amplitude index. For the period 1960-70 it is found that there is apparent bimodality in this index. However, the different amplitudes are realized at different longitudes, so there is no bimodality at any single longitude. As a corollary, it is found that many commonly used statistics to detect multimodality in atmospheric fields potentially satisfy the assumptions underlying the central limit theorem and therefore can only show approximately normal distributions. The author concludes that these techniques may therefore be suboptimal to detect any multimodality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is a current need to constrain the parameters of gravity wave drag (GWD) schemes in climate models using observational information instead of tuning them subjectively. In this work, an inverse technique is developed using data assimilation principles to estimate gravity wave parameters. Because mostGWDschemes assume instantaneous vertical propagation of gravity waves within a column, observations in a single column can be used to formulate a one-dimensional assimilation problem to estimate the unknown parameters. We define a cost function that measures the differences between the unresolved drag inferred from observations (referred to here as the ‘observed’ GWD) and the GWD calculated with a parametrisation scheme. The geometry of the cost function presents some difficulties, including multiple minima and ill-conditioning because of the non-independence of the gravity wave parameters. To overcome these difficulties we propose a genetic algorithm to minimize the cost function, which provides a robust parameter estimation over a broad range of prescribed ‘true’ parameters. When real experiments using an independent estimate of the ‘observed’ GWD are performed, physically unrealistic values of the parameters can result due to the non-independence of the parameters. However, by constraining one of the parameters to lie within a physically realistic range, this degeneracy is broken and the other parameters are also found to lie within physically realistic ranges. This argues for the essential physical self-consistency of the gravity wave scheme. A much better fit to the observed GWD at high latitudes is obtained when the parameters are allowed to vary with latitude. However, a close fit can be obtained either in the upper or the lower part of the profiles, but not in both at the same time. This result is a consequence of assuming an isotropic launch spectrum. The changes of sign in theGWDfound in the tropical lower stratosphere, which are associated with part of the quasi-biennial oscillation forcing, cannot be captured by the parametrisation with optimal parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A single habit parameterization for the shortwave optical properties of cirrus is presented. The parameterization utilizes a hollow particle geometry, with stepped internal cavities as identified in laboratory and field studies. This particular habit was chosen as both experimental and theoretical results show that the particle exhibits lower asymmetry parameters when compared to solid crystals of the same aspect ratio. The aspect ratio of the particle was varied as a function of maximum dimension, D, in order to adhere to the same physical relationships assumed in the microphysical scheme in a configuration of the Met Office atmosphere-only global model, concerning particle mass, size and effective density. Single scattering properties were then computed using T-Matrix, Ray Tracing with Diffraction on Facets (RTDF) and Ray Tracing (RT) for small, medium, and large size parameters respectively. The scattering properties were integrated over 28 particle size distributions as used in the microphysical scheme. The fits were then parameterized as simple functions of Ice Water Content (IWC) for 6 shortwave bands. The parameterization was implemented into the GA6 configuration of the Met Office Unified Model along with the current operational long-wave parameterization. The GA6 configuration is used to simulate the annual twenty-year short-wave (SW) fluxes at top-of-atmosphere (TOA) and also the temperature and humidity structure of the atmosphere. The parameterization presented here is compared against the current operational model and a more recent habit mixture model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The constant-density Charney model describes the simplest unstable basic state with a planetary-vorticity gradient, which is uniform and positive, and baroclinicity that is manifest as a negative contribution to the potential-vorticity (PV) gradient at the ground and positive vertical wind shear. Together, these ingredients satisfy the necessary conditions for baroclinic instability. In Part I it was shown how baroclinic growth on a general zonal basic state can be viewed as the interaction of pairs of ‘counter-propagating Rossby waves’ (CRWs) that can be constructed from a growing normal mode and its decaying complex conjugate. In this paper the normal-mode solutions for the Charney model are studied from the CRW perspective. Clear parallels can be drawn between the most unstable modes of the Charney model and the Eady model, in which the CRWs can be derived independently of the normal modes. However, the dispersion curves for the two models are very different; the Eady model has a short-wave cut-off, while the Charney model is unstable at short wavelengths. Beyond its maximum growth rate the Charney model has a neutral point at finite wavelength (r=1). Thereafter follows a succession of unstable branches, each with weaker growth than the last, separated by neutral points at integer r—the so-called ‘Green branches’. A separate branch of westward-propagating neutral modes also originates from each neutral point. By approximating the lower CRW as a Rossby edge wave and the upper CRW structure as a single PV peak with a spread proportional to the Rossby scale height, the main features of the ‘Charney branch’ (0

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Kelvin Helmholtz (KH) problem, with zero stratification, is examined as a limiting case of the Rayleigh model of a single shear layer whose width tends to zero. The transition of the Rayleigh modal dispersion relation to the KH one, as well as the disappearance of the supermodal transient growth in the KH limit, are both rationalized from the counterpropagating Rossby wave perspective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[1] Temperature and ozone observations from the Microwave Limb Sounder (MLS) on the EOS Aura satellite are used to study equatorial wave activity in the autumn of 2005. In contrast to previous observations for the same season in other years, the temperature anomalies in the middle and lower tropical stratosphere are found to be characterized by a strong wave-like eastward progression with zonal wave number equal to 3. Extended empirical orthogonal function (EOF) analysis reveals that the wave 3 components detected in the temperature anomalies correspond to a slow Kelvin wave with a period of 8 days and a phase speed of 19 m/s. Fluctuations associated with this Kelvin wave mode are also apparent in ozone profiles. Moreover, as expected by linear theory, the ozone fluctuations observed in the lower stratosphere are in phase with the temperature perturbations, and peak around 20–30 hPa where the mean ozone mixing ratios have the steepest vertical gradient. A search for other Kelvin wave modes has also been made using both the MLS observations and the analyses from one experiment where MLS ozone profiles are assimilated into the European Centre for Medium-Range Weather Forecasts (ECMWF) data assimilation system via a 6-hourly 3D var scheme. Our results show that the characteristics of the wave activity detected in the ECMWF temperature and ozone analyses are in good agreement with MLS data.