8 resultados para silver(I)
em CentAUR: Central Archive University of Reading - UK
Resumo:
The compounds Ag(CN)(NH3) and Ag(Br)(NH3) are remarkable in that they form solids containing the simple molecular units NC-Ag-NH3 and Br-Ag-NH3, rather than extended solids, and are the first examples of simple linear asymmetric complexes of silver(I).
Resumo:
The ligands PhL and MeL are obtained by condensing 2-formylpyridine with benzil dihydrazone and diacetyl dihydrazone, respectively, in 2: 1 molar proportion. With silver( I), PhL yields a double-stranded dinuclear cationic helicate 1 in which the metal is tetrahedral but MeL gives a cationic one-dimensional polymeric complex 2 where silver( I) is distorted square planar and the ligand backbone is nearly planar. In both complexes, metal: ligand ratio is 1: 1. Ab initio calculations on the ligands at the HF/6-31+G* level reveal that while PhL strongly prefers a helical conformation, MeL has a natural inclination to remain in a planar conformation. Density functional theory calculations on model silver( I) complexes show that formation of the linear polymer in the case of MeL is also an important factor in imposing the planar geometry of Ag(I) in 2.
Resumo:
The structural transformations between cesium silver-copper cyanides under modest conditions, both in solution and in the solid state, are described. Three new cesium silver(I) copper(I) cyanides with three-dimensional (3-D) framework structures were prepared as single crystals from a one-pot reaction initially heated under hydrothermal conditions. The first product to appear, Cs3Ag2Cu3(CN)(8) (I), when left in contact with the supernatant produced CsAgCu(CN)(3) (II) and CsAgCu(CN)(3)center dot 1/3H(2)O (III) over a few months via a series of thermodynamically controlled cascade reactions. Crystals of the hydrate (III) can be dehydrated to polycrystalline CsAgCu(CN)(3) (II) on heating at 100 degrees C in a remarkable solid-state transformation involving substantial breaking and reconnection of metal-cyanide linkages. Astonishingly, the conversion between the two known polymorphs of CsAg2Cu(CN)(4), which also involves a major change in connectivity and topology, occurs at 180 degrees C as a single-crystal to single-crystal transformation. Structural features of note in these materials include the presence of helical copper-cyanide chains in (I) and (II), which in the latter compound produce a chiral material. In (II) and (III), the silver-copper cyanide networks are both self- and interpenetrating, features also seen in the known polymorphs of CsAg2Cu(CN)(4).
Resumo:
[Cu(2-acetylpyridine)(2)]ClO4 (1), characterised here, has a novel Cu'N202 core in the solid state. Variable-temperature H-1 NMR studies show that the two chelate rings open up in solution at room temperature and the keto oxygen atoms dangle freely. As the temperature is lowered, the 0 atoms tend to bind to the metal atom. The corresponding silver(I) complex, [Ag(2-acetylpyridine)2]ClO4 (4), characterised by single-crystal X-ray crystallography, has an (AgN2)-N-I core in the solid state as well as in solution. Thus, while 1 is fluxional, 4 is not. In cyclic voltammetry, complex 1 displays a quasireversible Cu-II/I couple with a half-wave potential of 0.40 V vs. SCE. Complex I is easily oxidised by air and H2O2 in methanol to give rise to a dinuclear copper(II) complex where the ligand framework is not simple acetylpyridine. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).
Resumo:
We present simultaneous multicolor infrared and optical photometry of the black hole X-ray transient XTE J1118+480 during its short 2005 January outburst, supported by simultaneous X-ray observations. The variability is dominated by short timescales, ~10 s, although a weak superhump also appears to be present in the optical. The optical rapid variations, at least, are well correlated with those in X-rays. Infrared JHKs photometry, as in the previous outburst, exhibits especially large-amplitude variability. The spectral energy distribution (SED) of the variable infrared component can be fitted with a power law of slope α=-0.78+/-0.07, where F_ν~ν^α. There is no compelling evidence for evolution in the slope over five nights, during which time the source brightness decayed along almost the same track as seen in variations within the nights. We conclude that both short-term variability and longer timescale fading are dominated by a single component of constant spectral shape. We cannot fit the SED of the IR variability with a credible thermal component, either optically thick or thin. This IR SED is, however, approximately consistent with optically thin synchrotron emission from a jet. These observations therefore provide indirect evidence to support jet-dominated models for XTE J1118+480 and also provide a direct measurement of the slope of the optically thin emission, which is impossible, based on the average spectral energy distribution alone.
Resumo:
A Viewpoint on: 'Surface Geometry of C60 on Ag(111)' H. I. Li, K. Pussi, K. J. Hanna, L.-L. Wang, D. D. Johnson, H.-P. Cheng, H. Shin, S. Curtarolo, W. Moritz, J. A. Smerdon, R. McGrath, and R. D. Diehl. . Published in Physical Review Letters 103, 056101 (2009) on July 27, 2009.
Resumo:
New Cu(I) and Ag(I) complexes were prepared by reaction of [M(NCCH3)(4)][X] (M = Cu or Ag; X = BF4 or PF6) with the bidentate chalcogenide ligands Ph2P(E)NHP(E)Ph-2 (E = S, S(2)dppa; E = Se, Se(2)dppa), and dpspf (1, 1'-bis(diphenylselenophosphoryl)ferrocene). Copper and silver behaved differently. While three molecules of either S(2)dppa and Se(2)dppa bind to a distorted tetrahedral Cu-4 cluster, with deprotonation of the ligand, 1:2 complexes of the neutral ligands are formed with Ag(l), with a tetrahedral coordination of the metal. The [Cu-4{Ph2P(Se)NP(Se)Ph-2}(3)](+) clusters assemble as dimers, held together by weak Se...Se distances interactions. Another dimer was observed for the [Ag(dpspf)](+) cation, with two short Ag...Se distances. DFT and MP2 calculations indicated the presence of attracting interactions, reflected in positive Mayer indices (MI). The electrochemistry study of this species showed that both oxidation and reduction took place at silver. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We have studied the degradation of sebaceous fingerprints on brass surfaces using silver electroless deposition (SED) as a visualization technique. We have stored fingerprints on brass squares either (i) in a locked dark cupboard or (ii) in glass-filtered natural daylight for periods of 3 h, 24 h, 1 week, 3 weeks, and 6 weeks. We find that fingerprints on brass surfaces degrade much more rapidly when kept in the light than they do under dark conditions with a much higher proportion of high-quality prints found after 3 or 6 weeks of aging when stored in the dark. This process is more marked than for similar fingerprints on black PVC surfaces. Identifiable prints can be achieved on brass surfaces using both SED and cyanoacrylate fuming (CFM). SED is quick and straightforward to perform. CFM is more time-consuming but is versatile and can be applied to a wider range of metal surfaces than SED, for example brass surfaces which have been coated by a lacquer.