6 resultados para shoulder girdle
em CentAUR: Central Archive University of Reading - UK
Resumo:
The forelimbs of higher vertebrates are composed of two portions: the appendicular region (stylopod, zeugopod and autopod) and the less prominent proximal girdle elements (scapula and clavicle) that brace the limb to the main trunk axis. We show that the formation of the muscles of the proximal limb occurs through two distinct mechanisms. The more superficial girdle muscles (pectoral and latissimus dorsi) develop by the “In–Out” mechanism whereby migration of myogenic cells from the somites into the limb bud is followed by their extension from the proximal limb bud out onto the thorax. In contrast, the deeper girdle muscles (e.g. rhomboideus profundus and serratus anterior) are induced by the forelimb field which promotes myotomal extension directly from the somites. Tbx5 inactivation demonstrated its requirement for the development of all forelimb elements which include the skeletal elements, proximal and distal muscles as well as the sternum in mammals and the cleithrum of fish. Intriguingly, the formation of the diaphragm musculature is also dependent on the Tbx5 programme. These observations challenge our classical views of the boundary between limb and trunk tissues. We suggest that significant structures located in the body should be considered as components of the forelimb.
Resumo:
A new primary model based on a thermodynamically consistent first-order kinetic approach was constructed to describe non-log-linear inactivation kinetics of pressure-treated bacteria. The model assumes a first-order process in which the specific inactivation rate changes inversely with the square root of time. The model gave reasonable fits to experimental data over six to seven orders of magnitude. It was also tested on 138 published data sets and provided good fits in about 70% of cases in which the shape of the curve followed the typical convex upward form. In the remainder of published examples, curves contained additional shoulder regions or extended tail regions. Curves with shoulders could be accommodated by including an additional time delay parameter and curves with tails shoulders could be accommodated by omitting points in the tail beyond the point at which survival levels remained more or less constant. The model parameters varied regularly with pressure, which may reflect a genuine mechanistic basis for the model. This property also allowed the calculation of (a) parameters analogous to the decimal reduction time D and z, the temperature increase needed to change the D value by a factor of 10, in thermal processing, and hence the processing conditions needed to attain a desired level of inactivation; and (b) the apparent thermodynamic volumes of activation associated with the lethal events. The hypothesis that inactivation rates changed as a function of the square root of time would be consistent with a diffusion-limited process.
Resumo:
Objective: To evaluate the effect of robot-mediated therapy on arm dysfunction post stroke. Design: A series of single-case studies using a randomized multiple baseline design with ABC or ACB order. Subjects (n = 20) had a baseline length of 8, 9 or 10 data points. They continued measurement during the B - robot-mediated therapy and C - sling suspension phases. Setting: Physiotherapy department, teaching hospital. Subjects: Twenty subjects with varying degrees of motor and sensory deficit completed the study. Subjects attended three times a week, with each phase lasting three weeks. Interventions: In the robot-mediated therapy phase they practised three functional exercises with haptic and visual feedback from the system. In the sling suspension phase they practised three single-plane exercises. Each treatment phase was three weeks long. Main measures: The range of active shoulder flexion, the Fugl-Meyer motor assessment and the Motor Assessment Scale were measured at each visit. Results: Each subject had a varied response to the measurement and intervention phases. The rate of recovery was greater during the robot-mediated therapy phase than in the baseline phase for the majority of subjects. The rate of recovery during the robot-mediated therapy phase was also greater than that during the sling suspension phase for most subjects. Conclusion: The positive treatment effect for both groups suggests that robot-mediated therapy can have a treatment effect greater than the same duration of non-functional exercises. Further studies investigating the optimal duration of treatment in the form of a randomized controlled trial are warranted.
Resumo:
Benzene-1,2-dioxyacetic acid (bdoaH2) reacts with Mn(CH3CO2)2·4H2O in an ethanol-water mixture to give the manganese(II) complex [Mn(bdoa)(H2O)3]. The X-ray crystal structure of the complex shows the metal to be pseudo seven-coordinate. The quadridentate bdoa2− dicar☐ylate ligand forms an essentially planar girdle around the metal, being strongly bondedtransoid by a car☐ylate oxygen atom from each of the two car☐ylate moieties (mean MnO 2.199A˚) and also weakly chelated by the two internal ether oxygen atoms (mean MnO 2.413A˚). The coordination sphere about the manganese is completed by three water molecules (mean MnO 2.146A˚) lying in a meridional plane orthogonal to that of the bdoa2− ligand. Magnetic, conductivity and voltammetry data for the complex are given, and its use as a catalyst for the disproportionisation of H2O2 is described.
Resumo:
Limb girdle muscular dystrophy type 2H (LGMD2H) is an inherited autosomal recessive disease of skeletal muscle caused by a mutation in the TRIM32 gene. Currently its pathogenesis is entirely unclear. Typically the regeneration process of adult skeletal muscle during growth or following injury is controlled by a tissue specific stem cell population termed satellite cells. Given that TRIM32 regulates the fate of mammalian neural progenitor cells through controlling their differentiation, we asked whether TRIM32 could also be essential for the regulation of myogenic stem cells. Here we demonstrate for the first time that TRIM32 is expressed in the skeletal muscle stem cell lineage of adult mice, and that in the absence of TRIM32, myogenic differentiation is disrupted. Moreover, we show that the ubiquitin ligase TRIM32 controls this process through the regulation of c-Myc, a similar mechanism to that previously observed in neural progenitors. Importantly we show that loss of TRIM32 function induces a LGMD2H-like phenotype and strongly affects muscle regeneration in vivo. Our studies implicate that the loss of TRIM32 results in dysfunctional muscle stem cells which could contribute to the development of LGMD2H.