26 resultados para short cycle press
em CentAUR: Central Archive University of Reading - UK
Resumo:
This is an interim report on research carried out at the intertidal site of Peterstone Great Wharf, located on the Wentlooge Levels, c. 7 km east of Cardiff. The project is the first detailed survey and excavation of a site originally recorded in 1996-7 as part of a larger survey of the intertidal zone from Cardiff to the Second Severn Crossing. The 1997 survey produced important evidence for prehistoric human activity preserved within four palaeochannels. Significant erosion has taken place since then. A new survey of the foreshore has identified additional palaeochannels not seen in 1997 which form part of a more complex system of inter-cutting channels, many containing wood structures including short lines of timbers on the channel edge. Artefacts include a wooden axe handle, antler artefacts, an animal bone assemblage and some pottery of Beaker and Bronze Age date. The finds are thought to derive from a nearby, possibly eroded, settlement. The channels have trapped artefacts and preserved evidence of a range of activities, including what are interpreted as possible boat landings and fishing structures.
Resumo:
At Woolaston on the western shores of the middle Severn Estuary c. 7 km upstream of Chepstow intertidal Holocene sediment exposures have been surveyed and the stratigraphic sequence established by coring and limited excavation. There are two main peats each with a submerged forest. An existing dendrochronological sequence for the Upper Submerged Forest has been extended and the preliminary results of pollen analysis from the peat sequence are summarised. A few flint flakes were found but were not stratified in the mid-Holocene sequence. There is evidence for late Mesolithic / early Neolithic burning episodes which may relate to human activity. Evidence is reported for Medieval activity and the extensive modification of drainage in this period is suggested.
Resumo:
We report on the results of a laboratory investigation using a rotating two-layer annulus experiment, which exhibits both large-scale vortical modes and short-scale divergent modes. A sophisticated visualization method allows us to observe the flow at very high spatial and temporal resolution. The balanced long-wavelength modes appear only when the Froude number is supercritical (i.e. $F\,{>}\,F_\mathrm{critical}\,{\equiv}\, \upi^2/2$), and are therefore consistent with generation by a baroclinic instability. The unbalanced short-wavelength modes appear locally in every single baroclinically unstable flow, providing perhaps the first direct experimental evidence that all evolving vortical flows will tend to emit freely propagating inertia–gravity waves. The short-wavelength modes also appear in certain baroclinically stable flows. We infer the generation mechanisms of the short-scale waves, both for the baro-clinically unstable case in which they co-exist with a large-scale wave, and for the baroclinically stable case in which they exist alone. The two possible mechanisms considered are spontaneous adjustment of the large-scale flow, and Kelvin–Helmholtz shear instability. Short modes in the baroclinically stable regime are generated only when the Richardson number is subcritical (i.e. $\hbox{\it Ri}\,{<}\,\hbox{\it Ri}_\mathrm{critical}\,{\equiv}\, 1$), and are therefore consistent with generation by a Kelvin–Helmholtz instability. We calculate five indicators of short-wave generation in the baroclinically unstable regime, using data from a quasi-geostrophic numerical model of the annulus. There is excellent agreement between the spatial locations of short-wave emission observed in the laboratory, and regions in which the model Lighthill/Ford inertia–gravity wave source term is large. We infer that the short waves in the baroclinically unstable fluid are freely propagating inertia–gravity waves generated by spontaneous adjustment of the large-scale flow.
Resumo:
Aims: To describe the phenology and breeding success of one of the densest populations of Short-toed Eagle in Europe. Methods All nests in the Dadia-Lefkimi-Soufli forest in northeast Greece were located and visited regularly throughout the 1996-98 breeding seasons. Data on every stage of the breeding cycle were collected and related to among-year variation in the weather conditions during March to June. Results: A total of 58 pairs were located during the three-year study spread across 22 territories (the same territories are usually occupied each year). The nests were evenly spaced (mean of 2.7 km between nests). Adults arrived between mid-March and mid-April. Only one egg per nest was laid. Nestlings fledged on average after 68.9 days. Eagles departed between 8 September and 2 October. Conclusions: Arrival date determines laying date. The population size appears to be stable but the species has a relatively low reproductive rate and takes three to four years to mature, consequently it may be susceptible to stochastic or human-mediated factors.
Resumo:
In recent years, we have witnessed major advances in our understanding of the mammalian cell cycle and how it is regulated. Normal mammalian cellular proliferation is tightly regulated at each phase of the cell cycle by the activation and deactivation of a series of proteins that constitute the cell cycle machinery. This review article describes the various phases of the mammalian cell cycle and focuses on the cell cycle regulatory molecules that act at each stage to ensure normal cellular progression.
Arresting developments in the cardiac myocyte cell cycle: Role of cyclin-dependent kinase inhibitors
Resumo:
Like most other cells in the body, foetal and neonatal cardiac myocytes are able to divide and proliferate. However, the ability of these cells to undergo cell division decreases progressively during development such that adult myocytes are unable to divide. A major problem arising from this inability of adult cardiac myocytes to proliferate is that the mature heart is unable to regenerate new myocardial tissue following severe injury, e.g. infarction, which can lead to compromised cardiac pump function and even death. Studies in proliferating cells have identified a group of genes and proteins that controls cell division. These proteins include cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors (CDKIs), which interact with each other to form complexes that are essential for controlling normal cell cycle progression. A variety of other proteins, e.g. the retinoblastoma protein (pRb) and members of the E2F family of transcription factors, also can interact with, and modulate the activities of, these complexes. Despite the major role that these proteins play in other cell types, little was known until recently about their existence and activities in immature (proliferating) or mature (non-proliferating) cardiac myocytes. The reason(s) why cardiac myocytes lose their ability to divide during development remains unknown, but if strategies were developed to understand the mechanisms underlying cardiac myocyte growth, it could open up new avenues for the treatment of cardiovascular disease. In this article, we shall review the function of the cell cycle machinery and outline some of our recent findings pertaining to the involvement of the cell cycle in modulating cardiac myocyte growth and hypertrophy.
Resumo:
The aim of this review article is to provide an overview of the role of pigs as a biomedical model for humans. The usefulness and limitations of porcine models have been discussed in terms of metabolic, cardiovascular, digestive and bone diseases in humans. Domestic pigs and minipigs are the main categories of pigs used as biomedical models. One drawback of minipigs is that they are in short supply and expensive compared with domestic pigs, which in contrast cost more to house, feed and medicate. Different porcine breeds show different responses to the induction of specific diseases. For example, ossabaw minipigs provide a better model than Yucatan for the metabolic syndrome as they exhibit obesity, insulin resistance and hypertension, all of which are absent in the Yucatan. Similar metabolic/physiological differences exist between domestic breeds (e.g. Meishan v. Pietrain). The modern commercial (e.g. Large White) domestic pig has been the preferred model for developmental programming due to the 2- to 3-fold variation in body weight among littermates providing a natural form of foetal growth retardation not observed in ancient (e.g. Meishan) domestic breeds. Pigs have been increasingly used to study chronic ischaemia, therapeutic angiogenesis, hypertrophic cardiomyopathy and abdominal aortic aneurysm as their coronary anatomy and physiology are similar to humans. Type 1 and II diabetes can be induced in swine using dietary regimes and/or administration of streptozotocin. Pigs are a good and extensively used model for specific nutritional studies as their protein and lipid metabolism is comparable with humans, although pigs are not as sensitive to protein restriction as rodents. Neonatal and weanling pigs have been used to examine the pathophysiology and prevention/treatment of microbial-associated diseases and immune system disorders. A porcine model mimicking various degrees of prematurity in infants receiving total parenteral nutrition has been established to investigate gut development, amino acid metabolism and non-alcoholic fatty liver disease. Endoscopic therapeutic methods for upper gastrointestinal tract bleeding are being developed. Bone remodelling cycle in pigs is histologically more similar to humans than that of rats or mice, and is used to examine the relationship between menopause and osteoporosis. Work has also been conducted on dental implants in pigs to consider loading; however with caution as porcine bone remodels slightly faster than human bone. We conclude that pigs are a valuable translational model to bridge the gap between classical rodent models and humans in developing new therapies to aid human health.
Resumo:
Shell aragonite δ18O values of unionid freshwater mussels are applied as a proxy for past river discharges in the rivers Rhine and Meuse, using a set of nine shells from selected climatic intervals during the late Holocene. A single Meuse shell derives from the Subboreal and its δ18O values are similar to modern values. The Rhine specimens represent the Subboreal, the Roman Warm Period and the Medieval Warm Period (MWP). These shells also show averages and ranges of aragonite δ18O values similar to modern specimens. This indicates that environmental conditions such as Rhine river dynamics, Alpine meltwater input and drought severity during these intervals were similar to the 20th century. These shells do not record subtle centennial to millennial climatic variation due to their relatively short lifespan and the large inter-annual and intra-seasonal variation in environmental conditions. However, they are very suitable for studying seasonal to decadal scale climate variability. The two shells with the longest lifespan appear to show decadal scale variability in reconstructed water δ18O values during the MWP, possibly forced by the North Atlantic Oscillation (NAO), which is the dominant mode of variability influencing precipitation regimes over Europe.
Resumo:
We have examined the atmospheric water cycle of both Polar Regions, pole wards of 60°N and 60°S, using the ERA-Interim re-analysis and high-resolution simulations with the ECHAM5 model for both the present and future climate based on the IPCC, A1B scenario, representative of the last three decades of the 21st century. The annual precipitation in ERA-Interim amounts to ~17000 km3 and is more or less the same in the Arctic and the Antarctic, but it is composed differently. In the Arctic the annual evaporation is some 8000 km3 but some 3000 km3 less in the Antarctica where the net horizontal transport is correspondingly larger. The net water transport of the model is more intense than in ERA-Interim, in the Arctic the difference is 2.5% and in the Antarctic it is 6.2%. Precipitation and net horizontal transport in the Arctic has a maximum in August and September. Evaporation peaks in June and July. The seasonal cycle is similar in Antarctica with the highest precipitation in the austral autumn. The largest net transport occurs at the end of the major extra-tropical storm tracks in the Northern Hemisphere such as the eastern Pacific and eastern north Atlantic. The variability of the model is virtually identical to that of the re-analysis and there are no changes in variability between the present climate and the climate at the end of the 21st century when normalized with the higher level of moisture. The changes from year to year are substantial with the 20 and 30-year records being generally too short to identify robust trends in the hydrological cycle. In the A1B climate scenario the strength of the water cycle increases by some 25% in the Arctic and by 19% in the Antarctica, as measured by annual precipitation. The increase in the net horizontal transport is 29% and 22% respectively, and the increase in evaporation correspondingly less. The net transport follows closely the Clausius-Clapeyron relation. There is 2 a minor change in the annual cycle of the Arctic atmospheric water cycle with the maximum transport and precipitation occurring later in the year. There is a small imbalance of some 4-6% between the net transport and precipitation minus evaporation. We suggest that this is mainly due to the fact the transport is calculated from instantaneous 6-hourly data while precipitation and evaporation is accumulated over a 6 hour period. The residual difference is proportionally similar for all experiments and hardly varies from year to year.
Resumo:
Colon cancer is a leading and expanding cause of death worldwide. A major contributory factor to this disease is diet composition; some components are beneficial (e.g. dietary fibre) whilst others are detrimental (e.g. alcohol). Garlic oil is a prominent dietary constituent that prevents the development of colorectal cancer. This effect is believed to be mainly due to diallyl disulphide (DADS), which selectively induces redox stress in cancerous (rather than normal) cells which leads to apoptotic cell death. However, the detailed mechanism by which DADS causes apoptosis remains unclear. We show that DADS-treatment of colonic adenocarcinoma cells (HT-29) initiates a cascade of molecular events characteristic of apoptosis. These include a decrease in cellular proliferation, translocation of phosphatidylserine to the plasma-membrane outer-layer, activation of caspase-3, genomic-DNA fragmentation and G2/M phase cell-cycle arrest. Short-chain fatty acids (SCFAs), particularly butyrate (abundantly produced in the gut by bacterial fermentation of dietary polysaccharides), enhance colonic cell integrity but, in contrast, inhibit colonic-cancer cell growth. Combining DADS with butyrate augmented the effect of butyrate on HT-29 cells. These results suggest that the anti-cancerous properties of DADS afford greater benefit when supplied with other favourable dietary factors (SCFA/polysaccharides) that likewise reduce colonic tumour development.