4 resultados para shelters
em CentAUR: Central Archive University of Reading - UK
Resumo:
Unusually among the mammals, humans lack an outer layer of protective fur or hair. We propose the hypothesis that humans evolved hairlessness to reduce parasite loads, especially ectoparasites that may carry disease. We suggest that hairlessness is maintained by these naturally selected benefits and by sexual selection operating on both sexes. Hairlessness is made possible in humans owing to their unique abilities to regulate their environment via fire, shelter and clothing. Clothes and shelters allow a more flexible response to the external environment than a permanent layer of fur and can be changed or cleaned if infested with parasites. Naked mole-rats, another hairless and non-aquatic mammal species, also inhabit environments in which ectoparasite transmission is expected to be high, but in which temperatures are closely regulated. Our hypothesis explains features of human hairlessness-such as the marked sex difference in body hair, and its retention in the pubic regions-that are not explained by other theories.
Resumo:
The Baja California Peninsula is home to 85 species of cacti, of which 54 are endemic, highlighting its importance as a cactus diverse region within Mexico. Many species are under threat due to collection pressure and habitat loss, but ensuring maximal protection of cacti species requires a better understanding of diversity patterns. We assessed species richness, endemism, and phylogenetic and morphological diversity using herbarium records and a molecular phylogeny for 82 species of cacti found in the peninsula. The four diversity measures were estimated for the existing nature reserve network and for 314 hexagrids of 726 km2. Using the hexagrid data, we surveyed our results for areas that best complement the current protected cacti diversity in the Baja California Peninsula. Currently, the natural reserve network in Baja shelters an important amount of the cacti diversity (74% of the species, 85.9% of the phylogenetic diversity, 76% of endemics and all the growth forms). While species richness produced several solutions to complement the diversity protected, by identifying priority species (endemic species with high contribution to overall PD) one best solution is reported. Three areas (San Matías, Magdalena and Margarita Islands and El Triunfo), selected using species richness, PD and endemism, best complement the diversity currently protected, increasing species richness to 89%, PD to 94% and endemism to 89%, and should be considered in future conservation plans. Two of these areas could be included within nature reserves already established.
Resumo:
The development of architecture and the settlement is central to discussions concerning the Neolithic transformation asthe very visible evidence for the changes in society that run parallel to the domestication of plants and animals. Architecture hasbeen used as an important aspect of models of how the transformation occurred, and as evidence for the sharp difference betweenhunter-gatherer and farming societies. We suggest that the emerging evidence for considerable architectural complexity from theearly Neolithic indicates that some of our interpretations depend too much on a very basic understanding of structures which arenormally seen as being primarily for residential purposes and containing households, which become the organising principle for thenew communities which are often seen as fully sedentary and described as villages. Recent work in southern Jordan suggests that inthis region at least there is little evidence for a standard house, and that structures are constructed for a range of diverse primary purposes other than simple domestic shelters.
Resumo:
A rain shelter experiment was conducted in a 90-year-old Norway spruce stand, in the Kysucké Beskydy Mts (Slovakia). Three rain shelters were constructed in the stand to prevent the rainfall from reaching the soil and to reduce water availability in the rhizosphere. Fine root biomass and necromass were repeatedly measured throughout a growing season by soil coring. We established the quantities of fine root biomass (live) and necromass (dead) at soil depths of 0-5, 5-15, 15-25, and 25-35 cm. Significant differences in soil moisture contents between control and drought plots were found in the top 15 cm of soil after 20 weeks of rainfall manipulation (lasting from early June to late October). Our observations show that even relatively light drought decreased total fine root biomass from 272.0 to 242.8 g m-2 and increased the amount of necromass from 79.2 to 101.2 g m-2 in the top 35 cm of soil. Very fine roots, i.e. those with diameter up to 1 mm, were more affected than total fine roots defined as 0-2 mm. The effect of reduced water availability was depth-specific, as a result we observed a modification of vertical distribution of fine roots. More roots in drought treatment were produced in the wetter soil horizons at 25-35 cm depth than at the surface. We conclude that fine and very fine root systems of Norway spruce have the capacity to re-allocate resources to roots at different depths in response to environmental signals, resulting in changes in necromass to biomass ratio.