26 resultados para shelf fronts

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An initial study of the ichnofabrics of the Upper Jurassic (Kimmeridgian) Jubaila Formation of Saudi Arabia shows that the ichnofabrics are closely matched to the relatively well-described ichnofabrics of the contemporary Fulmar Formation of the UK Continental Shelf (North Sea), in respect of the lower shoreface/offshore transition facies to offshore facies. The ichnology and ichnofabrics of the Lower Jubaila Formation show that deposition took place on an open-marine platform on the Arabian craton subject to periodic storm activity, but under a persisting equilibrium between sediment accumulation and subsidence. This is consistent with the moderately deep-marine foraminiferal assemblages and the presence of calcareous nannofossils. Cyclicity is absent, though storm beds may be grouped, in contrast with the genetic sequences present in the rift and halokinetic scenario of the North Sea. In contrast with the siliciclastic setting hardgrotinds (with Gastrochaenolites), more common firmground omission surfaces, and micritic mudstones with Chondrites and Zoophycos are notable features of the carbonate facies. In siliciclastic successions (parasequences) the latter ichnotaxa are generally regarded as having been deposited in rather deeper water, but in the carbonate Jubaila Formation are interpreted as being associated with local areas of lower turbulence. Likewise, the hardgrounds and firmgrounds, which have not been traced laterally, are tentatively regarded to be of local significance.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developmental and biophysical leaf characteristics that influence post-harvest shelf life in lettuce, an important leafy crop, have been examined. The traits were studied using 60 informative F-9 recombinant inbed lines (RILs) derived from a cross between cultivated lettuce (Lactuca sativa cv. Salinas) and wild lettuce (L. serriola acc. UC96US23). Quantitative trait loci (QTLs) for shelf life co-located most closely with those for leaf biophysical properties such as plasticity, elasticity, and breakstrength, suggesting that these are appropriate targets for molecular breeding for improved shelf life. Significant correlations were found between shelf life and leaf size, leaf weight, leaf chlorophyll content, leaf stomatal index, and epidermal cell number per leaf, indicating that these pre-harvest leaf development traits confer post-harvest properties. By studying the population in two contrasting environments in northern and southern Europe, the genotype by environment interaction effects of the QTLs relevant to leaf development and shelf life were assessed. In total, 107 QTLs, distributed on all nine linkage groups, were detected from the 29 traits. Only five QTLs were common in both environments. Several areas where many QTLs co-located (hotspots) on the genome were identified, with relatively little overlap between developmental hotspots and those relating to shelf life. However, QTLs for leaf biophysical properties (breakstrength, plasticity, and elasticity) and cell area correlated well with shelf life, confirming that the ideal ideotype lettuce should have small cells with strong cell walls. The identification of QTLs for leaf development, strength, and longevity will lead to a better understanding of processability at a genetic and cellular level, and allow the improvement of salad leaf quality through marker-assisted breeding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is proposed that post-harvest longevity and appearance of salad crops is closely linked to pre-harvest leaf morphology (cell and leaf size) and biophysical structure (leaf strength). Transgenic lettuce plants (Lactuca sativa cv. Valeria) were produced in which the production of the cell wall-modifying enzyme xyloglucan endotransglucosylase/hydrolase (XTH) was down-regulated by antisense inhibition. Independently transformed lines were shown to have multiple members of the LsXTH gene family down-regulated in mature leaves of 6-week-old plants and during the course of shelf life. Consequently, xyloglucan endotransglucosylase (XET) enzyme activity and action were down-regulated in the cell walls of these leaves and it was established that leaf area and fresh weight were decreased while leaf strength was increased in the transgenic lines. Membrane permeability was reduced towards the end of shelf life in the transgenic lines relative to the controls and bacteria were evident inside the leaves of control plants only. Most importantly, an extended shelf-life of transgenic lines was observed relative to the non-transgenic control plants. These data illustrate the potential for engineering cell wall traits for improving quality and longevity of salad crops using either genetic modification directly, or by using markers associated with XTH genes to inform a commercial breeding programme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the four-dimensional variational data assimilation method (4DVar) can be interpreted as a form of Tikhonov regularization, a very familiar method for solving ill-posed inverse problems. It is known from image restoration problems that L1-norm penalty regularization recovers sharp edges in the image more accurately than Tikhonov, or L2-norm, penalty regularization. We apply this idea from stationary inverse problems to 4DVar, a dynamical inverse problem, and give examples for an L1-norm penalty approach and a mixed total variation (TV) L1–L2-norm penalty approach. For problems with model error where sharp fronts are present and the background and observation error covariances are known, the mixed TV L1–L2-norm penalty performs better than either the L1-norm method or the strong constraint 4DVar (L2-norm)method. A strength of the mixed TV L1–L2-norm regularization is that in the case where a simplified form of the background error covariance matrix is used it produces a much more accurate analysis than 4DVar. The method thus has the potential in numerical weather prediction to overcome operational problems with poorly tuned background error covariance matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of shallow-water sequences to oceanic anoxic event 2 and mid-Cenomanian events 1a and 1b was investigated along the west African margin of Morocco north of Agadir (Azazoul) and correlated with the deep-water sequence of the Tarfaya Basin (Mohammed Beach) based on biostratigraphy, mineralogy, phosphorus and stable isotopes. In the deeper Mohammed Beach section results show double peaks in δ13Corg for mid-Cenomanian events 1a and 1b (Rotalipora reicheli biozone, lower CC10a biozone), the characteristic oceanic anoxic event 2 δ13C excursion (Rotalipora cushmani extinction, top of CC10a biozone) and laminated (anoxic) black shale. In the shallow environment north of Agadir, a fluctuating sea-level associated with dysoxic, brackish and mesotrophic conditions prevailed during the middle to late Cenomanian, as indicated by oyster biostromes, nannofossils, planktonic and benthonic foraminiferal assemblages. Anoxic conditions characteristic of oceanic anoxic event 2 (for example, laminated black shales) did not reach into shallow-water environments until the maximum transgression of the early Turonian. Climate conditions decoupled along the western margin of Morocco between mid-Cenomanian event 1b and the Cenomanian–Turonian boundary, as also observed in eastern Tethys. North of Agadir alternating humid and dry seasonal conditions prevailed, whereas in the Tarfaya Basin the climate was dry and seasonal. This climatic decoupling can be attributed to variations in the Intertropical Convergence Zone and in the intensity of the north-east trade winds in tropical areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterize near-surface ocean diurnal warm-layer events, using satellite observations and fields from numerical weather forecasting. The study covers April to September, 2006, over the area 11°W to 17°E and 35°N to 57°N, with 0.1° cells. We use hourly satellite SSTs from which peak amplitudes of diurnal cycles in SST (dSSTs) can be estimated with error ∼0.3 K. The diurnal excursions of SST observed are spatially and temporally coherent. The largest dSSTs exceed 6 K, affect 0.01% of the surface, and are seen in the Mediterranean, North and Irish Seas. There is an anti-correlation between the magnitude and the horizontal length scale of dSST events. Events wherein dSST exceeds 4 K have length scales of ≤40 km. From the frequency distribution of different measures of wind-speed minima, we infer that extreme dSST maxima arise where conditions of low wind speed are sustained from early morning to mid afternoon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exchange between the open ocean and sub-ice shelf cavities is important to both water mass transformations and ice shelf melting. Here we use a high-resolution (500 m) numerical model to investigate to which degree eddies produced by frontal instability at the edge of a polynya are capable of transporting dense High Salinity Shelf Water (HSSW) underneath an ice shelf. The applied surface buoyancy flux and ice shelf geometry is based on Ronne Ice Shelf in the southern Weddell Sea, an area of intense wintertime sea ice production where a flow of HSSW into the cavity has been observed. Results show that eddies are able to enter the cavity at the southwestern corner of the polynya where an anticyclonic rim current intersects the ice shelf front. The size and time scale of simulated eddies are in agreement with observations close to the Ronne Ice Front. The properties and strength of the inflow are sensitive to the prescribed total ice production, flushing the ice shelf cavity at a rate of 0.2–0.4 × 106 m3 s−1 depending on polynya size and magnitude of surface buoyancy flux. Eddy-driven HSSW transport into the cavity is reduced by about 50% if the model grid resolution is decreased to 2-5 km and eddies are not properly resolved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Antarctic continental shelf seas feature a bimodal distribution of water mass temperature, with the Amundsen and Bellingshausen Seas flooded by Circumpolar Deep Water that is several degrees Celsius warmer than the cold shelf waters prevalent in the Weddell and Ross Seas. This bimodal distribution could be caused by differences in atmospheric forcing, ocean dynamics, ocean and ice feedbacks, or some combination of these factors. In this study, a highly simplified coupled sea ice–mixed layer model is developed to investigate the physical processes controlling this situation. Under regional atmospheric forcings and parameter choices the 10-yr simulations demonstrate a complete destratification of the Weddell Sea water column in winter, forming cold, relatively saline shelf waters, while the Amundsen Sea winter mixed layer remains shallower, allowing a layer of deep warm water to persist. Applying the Weddell atmospheric forcing to the Amundsen Sea model destratifies the water column after two years, and applying the Amundsen forcing to the Weddell Sea model results in a shallower steady-state winter mixed layer that no longer destratifies the water column. This suggests that the regional difference in atmospheric forcings alone is sufficient to account for the bimodal distribution in Antarctic shelf-sea temperatures. The model prediction of mixed layer depth is most sensitive to the air temperature forcing, but a switch in all forcings is required to prevent destratification of the Weddell Sea water column.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] A two-dimensional plume model is used to study the interaction between Filchner-Ronne Ice Shelf, Antarctica and its underlying ocean cavity. Ice Shelf Water (ISW) plumes are initiated by the freshwater released from a melting ice shelf and, if they rise, may become supercooled and deposit marine ice due to the pressure increase in the in situ freezing temperature. The aim of this modeling study is to determine the origin of the thick accretions of marine ice at the base of Filchner-Ronne Ice Shelf and thus improve our understanding of ISW flow paths. The model domain is defined from measurements of ice shelf draft, and from this ISW the model is able to predict plumes that exit the cavity in the correct locations. The modeled plumes also produce basal freezing rates that account for measured marine ice thicknesses in the western part of Ronne Ice Shelf. We find that the freezing rate and plume properties are significantly influenced by the confluence of plumes from different meltwater sources. We are less successful in matching observations of marine ice under the rest of Filchner-Ronne Ice Shelf, which we attribute primarily to this model’s neglect of circulations in the ocean outside the plume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flavour profiles of two genotypes of Charentais cantaloupe melons (medium shelf-life and long shelf-life), harvested at two distinct maturities (immature and mature fruit), were investigated. Dynamic headspace extraction (DHE), solid-phase extraction (SPE), gas chromatography–mass spectrometry (GC-MS) and gas chromatography–olfactometry/mass spectrometry (GC-O/MS) were used to determine volatile and semi-volatile compounds. Qualitative descriptive analysis (QDA) was used to assess the organoleptic impact of the different melons and the sensory data were correlated with the chemical analysis. There were significant, consistent and substantial differences between the mature and immature fruit for the medium shelf-life genotype, the less mature giving a green, cucumber character and lacking the sweet, fruity character of the mature fruit. However, maturity at harvest had a much smaller impact on the long shelf-life melons and fewer differences were detected. These long shelf-life melons tasted sweet, but lacked fruity flavours, instead exhibiting a musty, earthy character.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of the dynamics and thermodynamics of a plume of meltwater at the base of an ice shelf is presented. Such ice shelf water plumes may become supercooled and deposit marine ice if they rise (because of the pressure decrease in the in situ freezing temperature), so the model incorporates both melting and freezing at the ice shelf base and a multiple-size-class model of frazil ice dynamics and deposition. The plume is considered in two horizontal dimensions, so the influence of Coriolis forces is incorporated for the first time. It is found that rotation is extremely influential, with simulated plumes flowing in near-geostrophy because of the low friction at a smooth ice shelf base. As a result, an ice shelf water plume will only rise and become supercooled (and thus deposit marine ice) if it is constrained to flow upslope by topography. This result agrees with the observed distribution of marine ice under Filchner–Ronne Ice Shelf, Antarctica. In addition, it is found that the model only produces reasonable marine ice formation rates when an accurate ice shelf draft is used, implying that the characteristics of real ice shelf water plumes can only be captured using models with both rotation and a realistic topography.