5 resultados para shear band heating

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of a uniform horizontal temperature gradient to prescribed fixed heating is calculated in the context of an extended version of surface quasigeostrophic dynamics. It is found that for zero mean surface flow and weak cross-gradient structure the prescribed heating induces a mean temperature anomaly proportional to the spatial Hilbert transform of the heating. The interior potential vorticity generated by the heating enhances this surface response. The time-varying part is independent of the heating and satisfies the usual linearized surface quasigeostrophic dynamics. It is shown that the surface temperature tendency is a spatial Hilbert transform of the temperature anomaly itself. It then follows that the temperature anomaly is periodically modulated with a frequency proportional to the vertical wind shear. A strong local bound on wave energy is also found. Reanalysis diagnostics are presented that indicate consistency with key findings from this theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire investigation is a challenging area for the forensic investigator. The aim of this work was to use spectral changes to paint samples to estimate the temperatures to which a paint has been heated. Five paint samples (one clay paint, two car paints, one metallic paint, and one matt emulsion) have been fully characterized by a combination of attenuated total reflectance Fourier transform infrared (ATR-IR), Raman, X-ray fluorescence spectroscopy and powder X-ray diffraction. The thermal decomposition of these paints has been investigated by means of ATR-IR and thermal gravimetric analysis. Clear temperature markers are observed in the ATR-IR spectra namely: loss of m(C = O) band, >300°C; appearance of water bands on cooling, >500°C; alterations to m(Si–O) bands due to dehydration of silicate clays, >700°C; diminution of m(CO3) and d(CO3) modes of CaCO3, >950°C. We suggest the possible use of portable ATR-IR for nondestructive, in situ analysis of paints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present observations of a poleward propagating substorm-disturbed region which was observed by the European Incoherent SCATter (EISCAT) radar and the Svalbard International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometers in the postmidnight sector. The expansion of the disturbance was launched by a substorm intensification which started similar to 25 min after the initial onset, and similar to 10 min before the disturbance arrived over Svalbard. In association with the magnetic disturbance, a poleward expanding enduring enhancement in the F region electron temperature was observed, indicative of soft electron precipitation, with a narrow band of enhanced ion temperature straddling its poleward edge, indicative of fast ion flows and ion-neutral collisional heating. This electron temperature boundary was coincident with the poleward propagating electrojet current system detected by the high-latitude IMAGE magnetometer stations and is taken to be a proxy for the observation of a substorm auroral bulge. The electron temperature boundary is inferred to have a width comparable or less than one radar range gate (similar to 60 km transverse to the magnetic field), while the region of high ion temperature was found to be approximately three gates wide, extending approximately two gates (similar to 120 km) poleward of the electron temperature boundary, and approximately one gate (similar to 60 km) equatorward. The two-beam radar line-of-sight velocity data are found to be consistent with the existence of a layer of high-speed flow in the boundary, peaking at values similar to1.5-3 km s(-1), roughly consistent with the ion temperature data. The flow is directed either east or west along the boundary depending on the direction of the flow in the poleward region. We infer that the flow is deflected along and around the boundary of the substorm-disturbed region due to the high conductivity of the latter. Variations in the flow poleward of the boundary produced no discernible magnetic effects on the ground, confirming the low conductivity of the preboundary ionosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper complements that in this issue by Clauer et al. concerning the international GISMOS campaign of 3–5 June 1987. From a detailed study of the EISCAT data, the polar-cap boundary, as defined by an almost shear east-west convection reversal, is found to contract across the EISCAT field of view between 04 and 07 MLT. An annulus of enhanced ion temperature and non-thermal plasma is observed immediately equatorward of the contracting boundary due to the lag in the response of the neutral-wind pattern to the change in ion flows. The ion flow inside the polar cap and at the boundary is shown to be relatively smooth, compared with that in the auroral oval, at 15-second resolution. The flow at the boundary is directed poleward, with velocities which exceed that of the boundary itself. The effect of velocity shears on the beamswinging technique used to derive the ion flows has been analysed in detail and it is found that spurious flows across a moving boundary can be generated. However, these are much smaller than the observed flows into the polar cap and cannot explain the 7 kV potential difference across the observed segment of the cap boundary between 04:30–06:30 UT. The ion temperature enhancements at the two observing azimuths is used to define the boundary orientation. The results are consistent with recent observations of slow anti-sunward flow of closed field lines on the flanks of the geomagnetic tail, which appears to be generated by some form of “viscous” coupling to the magnetosheath plasma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data recorded by the POLAR experiment run on the EISCAT radar during the international GISMOS campaign of 3–5 June 1987 are studied in detail. The polar-cap boundary, as denned by an almost shear East-West convection reversal, was observed to jump southward across the EISCAT field of view in two steps at 02:00 and 03:00 Magnetic Local Time and subsequently to contract back between 04:00 and 07:00 M.L.T. An annulus of enhanced ion temperature and non-thermal plasma was observed immediately equatorward of the contracting boundary due to the lag in the response of the neutral-wind pattern to the change in ion flows. The ion flow at the boundary is shown to be relatively smooth at 15 s resolution and directed northward, with velocities which exceed that of the boundary itself. The effect of velocity shears on the beamswinging technique used to derive the ion flows is analyzed in detail and it is shown that, for certain orientations of the cap boundary, spurious flows into the cap can be generated. However, these are much smaller than the observed flows into the polar cap and cannot explain the potential difference across the observed segment of the cap boundary (extending over 2 h of M.L.T.) which is roughly 7 kV. Similarly, an observed slowing of the zonal flow near the boundary cannot be explained as an error introduced by the use of the beamswinging technique. The results could be interpreted as being due to reconnection occurring on the dawn flank of the magnetopause (mapping to the polar cap at 04:30 06:30 M.L.T.). However, they are more consistent with recent observations of slow anti-sunward flow of closed field lines on the flanks of the geomagnetic tail, which appears to be generated by some form of “viscous” coupling to the magnetosheath plasma.