164 resultados para sensitivity matrix

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results are presented from a matrix of coupled model integrations, using atmosphere resolutions of 135 and 90 km, and ocean resolutions of 1° and 1/3°, to study the impact of resolution on simulated climate. The mean state of the tropical Pacific is found to be improved in the models with a higher ocean resolution. Such an improved mean state arises from the development of tropical instability waves, which are poorly resolved at low resolution; these waves reduce the equatorial cold tongue bias. The improved ocean state also allows for a better simulation of the atmospheric Walker circulation. Several sensitivity studies have been performed to further understand the processes involved in the different component models. Significantly decreasing the horizontal momentum dissipation in the coupled model with the lower-resolution ocean has benefits for the mean tropical Pacific climate, but decreases model stability. Increasing the momentum dissipation in the coupled model with the higher-resolution ocean degrades the simulation toward that of the lower-resolution ocean. These results suggest that enhanced ocean model resolution can have important benefits for the climatology of both the atmosphere and ocean components of the coupled model, and that some of these benefits may be achievable at lower ocean resolution, if the model formulation allows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix-assisted laser desorption/ionization (MALDI) is a key ionization technique in mass spectrometry (MS) for the analysis of labile macromolecules. An important area of study and improvements in relation to MALDI and its application in high-sensitivity MS is that of matrix design and sample preparation. Recently, 4-chloro-alpha-cyanocinnamic acid (ClCCA) has been introduced as a new rationally designed matrix and reported to provide an improved analytical performance as demonstrated by an increase in sequence coverage of protein digests obtained by peptide mass mapping (PMM) (Jaskolla, T. W.; et al. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 12200-12205). This new matrix shows the potential to be a superior alternative to the commonly used and highly successful alpha-cyano-4-hydroxycinnamic acid (CHCA). We have taken this design one step further by developing and optimizing an ionic liquid matrix (ILM) and liquid support matrix (LSM) using ClCCA as the principle chromophore and MALDI matrix compound. These new liquid matrices possess greater sample homogeneity and a simpler morphology. The data obtained from our studies show improved sequence coverage for BSA digests compared to the traditional CHCA crystalline matrix and for the ClCCA-containing ILM a similar performance to the ClCCA crystalline matrix down to 1 fmol of BSA digest prepared in a single MALDI sample droplet with current sensitivity levels in the attomole range. The LSMs show a high tolerance to contamination such as ammonium bicarbonate, a commonly used buffering agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With its highly fluctuating ion production matrix-assisted laser desorption/ionization (MALDI) poses many practical challenges for its application in mass spectrometry. Instrument tuning and quantitative ion abundance measurements using ion signal alone depend on a stable ion beam. Liquid MALDI matrices have been shown to be a promising alternative to the commonly used solid matrices. Their application in areas where a stable ion current is essential has been discussed but only limited data have been provided to demonstrate their practical use and advantages in the formation of stable MALDI ion beams. In this article we present experimental data showing high MALDI ion beam stability over more than two orders of magnitude at high analytical sensitivity (low femtomole amount prepared) for quantitative peptide abundance measurements and instrument tuning in a MALDI Q-TOF mass spectrometer. Samples were deposited on an inexpensive conductive hydrophobic surface and shrunk to droplets <10 nL in size. By using a sample droplet <10 nL it was possible to acquire data from a single irradiated spot for roughly 10,000 shots with little variation in ion signal intensity at a laser repetition rate of 5-20 Hz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet -- matrix-assisted laser desorption/ionisation -- mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. The low-femtomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydroxybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and low-mass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet - matrix-assisted laser desorption/ ionisation - mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. U. Am. Soc. Mass Spectrom. 1998, 9, 166-174). The low-ferntomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydrox-ybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and lowmass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Our objective was to test the performance of CA125 in classifying serum samples from a cohort of malignant and benign ovarian cancers and age-matched healthy controls and to assess whether combining information from matrix-assisted laser desorption/ionization (MALDI) time-of-flight profiling could improve diagnostic performance. Materials and Methods: Serum samples from women with ovarian neoplasms and healthy volunteers were subjected to CA125 assay and MALDI time-of-flight mass spectrometry (MS) profiling. Models were built from training data sets using discriminatory MALDI MS peaks in combination with CA125 values and tested their ability to classify blinded test samples. These were compared with models using CA125 threshold levels from 193 patients with ovarian cancer, 290 with benign neoplasm, and 2236 postmenopausal healthy controls. Results: Using a CA125 cutoff of 30 U/mL, an overall sensitivity of 94.8% (96.6% specificity) was obtained when comparing malignancies versus healthy postmenopausal controls, whereas a cutoff of 65 U/mL provided a sensitivity of 83.9% (99.6% specificity). High classification accuracies were obtained for early-stage cancers (93.5% sensitivity). Reasons for high accuracies include recruitment bias, restriction to postmenopausal women, and inclusion of only primary invasive epithelial ovarian cancer cases. The combination of MS profiling information with CA125 did not significantly improve the specificity/accuracy compared with classifications on the basis of CA125 alone. Conclusions: We report unexpectedly good performance of serum CA125 using threshold classification in discriminating healthy controls and women with benign masses from those with invasive ovarian cancer. This highlights the dependence of diagnostic tests on the characteristics of the study population and the crucial need for authors to provide sufficient relevant details to allow comparison. Our study also shows that MS profiling information adds little to diagnostic accuracy. This finding is in contrast with other reports and shows the limitations of serum MS profiling for biomarker discovery and as a diagnostic tool

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feedback design for a second-order control system leads to an eigenstructure assignment problem for a quadratic matrix polynomial. It is desirable that the feedback controller not only assigns specified eigenvalues to the second-order closed loop system but also that the system is robust, or insensitive to perturbations. We derive here new sensitivity measures, or condition numbers, for the eigenvalues of the quadratic matrix polynomial and define a measure of the robustness of the corresponding system. We then show that the robustness of the quadratic inverse eigenvalue problem can be achieved by solving a generalized linear eigenvalue assignment problem subject to structured perturbations. Numerically reliable methods for solving the structured generalized linear problem are developed that take advantage of the special properties of the system in order to minimize the computational work required. In this part of the work we treat the case where the leading coefficient matrix in the quadratic polynomial is nonsingular, which ensures that the polynomial is regular. In a second part, we will examine the case where the open loop matrix polynomial is not necessarily regular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the tracking of extrema associated with weather systems to be applied to a broad range of fields it is necessary to remove a background field that represents the slowly varying, large spatial scales. The sensitivity of the tracking analysis to the form of background field removed is explored for the Northern Hemisphere winter storm tracks for three contrasting fields from an integration of the U. K. Met Office's (UKMO) Hadley Centre Climate Model (HadAM3). Several methods are explored for the removal of a background field from the simple subtraction of the climatology, to the more sophisticated removal of the planetary scales. Two temporal filters are also considered in the form of a 2-6-day Lanczos filter and a 20-day high-pass Fourier filter. The analysis indicates that the simple subtraction of the climatology tends to change the nature of the systems to the extent that there is a redistribution of the systems relative to the climatological background resulting in very similar statistical distributions for both positive and negative anomalies. The optimal planetary wave filter removes total wavenumbers less than or equal to a number in the range 5-7, resulting in distributions more easily related to particular types of weather system. For the temporal filters the 2-6-day bandpass filter is found to have a detrimental impact on the individual weather systems, resulting in the storm tracks having a weak waveguide type of behavior. The 20-day high-pass temporal filter is less aggressive than the 2-6-day filter and produces results falling between those of the climatological and 2-6-day filters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reanalysis data obtained from data assimilation are increasingly used for diagnostic studies of the general circulation of the atmosphere, for the validation of modelling experiments and for estimating energy and water fluxes between the Earth surface and the atmosphere. Because fluxes are not specifically observed, but determined by the data assimilation system, they are not only influenced by the utilized observations but also by model physics and dynamics and by the assimilation method. In order to better understand the relative importance of humidity observations for the determination of the hydrological cycle, in this paper we describe an assimilation experiment using the ERA40 reanalysis system where all humidity data have been excluded from the observational data base. The surprising result is that the model, driven by the time evolution of wind, temperature and surface pressure, is able to almost completely reconstitute the large-scale hydrological cycle of the control assimilation without the use of any humidity data. In addition, analysis of the individual weather systems in the extratropics and tropics using an objective feature tracking analysis indicates that the humidity data have very little impact on these systems. We include a discussion of these results and possible consequences for the way moisture information is assimilated, as well as the potential consequences for the design of observing systems for climate monitoring. It is further suggested, with support from a simple assimilation study with another model, that model physics and dynamics play a decisive role for the hydrological cycle, stressing the need to better understand these aspects of model parametrization. .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of selected observing systems on the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis (ERA40) is explored by mimicking observational networks of the past. This is accomplished by systematically removing observations from the present observational data base used by ERA40. The observing systems considered are a surface-based system typical of the period prior to 1945/50, obtained by only retaining the surface observations, a terrestrial-based system typical of the period 1950-1979, obtained by removing all space-based observations, and finally a space-based system, obtained by removing all terrestrial observations except those for surface pressure. Experiments using these different observing systems have been limited to seasonal periods selected from the last 10 yr of ERA40. The results show that the surface-based system has severe limitations in reconstructing the atmospheric state of the upper troposphere and stratosphere. The terrestrial system has major limitations in generating the circulation of the Southern Hemisphere with considerable errors in the position and intensity of individual weather systems. The space-based system is able to analyse the larger-scale aspects of the global atmosphere almost as well as the present observing system but performs less well in analysing the smaller-scale aspects as represented by the vorticity field. Here, terrestrial data such as radiosondes and aircraft observations are of paramount importance. The terrestrial system in the form of a limited number of radiosondes in the tropics is also required to analyse the quasi-biennial oscillation phenomenon in a proper way. The results also show the dominance of the satellite observing system in the Southern Hemisphere. These results all indicate that care is required in using current reanalyses in climate studies due to the large inhomogeneity of the available observations, in particular in time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for assessing forecast skill and predictability that involves the identification and tracking of extratropical cyclones has been developed and implemented to obtain detailed information about the prediction of cyclones that cannot be obtained from more conventional analysis methodologies. The cyclones were identified and tracked along the forecast trajectories, and statistics were generated to determine the rate at which the position and intensity of the forecasted storms diverge from the analyzed tracks as a function of forecast lead time. The results show a higher level of skill in predicting the position of extratropical cyclones than the intensity. They also show that there is potential to improve the skill in predicting the position by 1 - 1.5 days and the intensity by 2 - 3 days, via improvements to the forecast model. Further analysis shows that forecasted storms move at a slower speed than analyzed storms on average and that there is a larger error in the predicted amplitudes of intense storms than the weaker storms. The results also show that some storms can be predicted up to 3 days before they are identified as an 850-hPa vorticity center in the analyses. In general, the results show a higher level of skill in the Northern Hemisphere (NH) than the Southern Hemisphere (SH); however, the rapid growth of NH winter storms is not very well predicted. The impact that observations of different types have on the prediction of the extratropical cyclones has also been explored, using forecasts integrated from analyses that were constructed from reduced observing systems. A terrestrial, satellite, and surface-based system were investigated and the results showed that the predictive skill of the terrestrial system was superior to the satellite system in the NH. Further analysis showed that the satellite system was not very good at predicting the growth of the storms. In the SH the terrestrial system has significantly less skill than the satellite system, highlighting the dominance of satellite observations in this hemisphere. The surface system has very poor predictive skill in both hemispheres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate model simulations of past and future climate invariably contain prescribed zonal mean stratospheric ozone. While the effects of zonal asymmetry in ozone have been examined in the Northern Hemisphere, much greater zonal asymmetry occurs in the Southern Hemisphere during the break up of the Antarctic ozone hole. We prescribe a realistic three-dimensional distribution of ozone in a high vertical resolution atmospheric model and compare results with a simulation containing zonal mean ozone. Prescribing the three dimensional ozone distribution results in a cooling of the stratosphere and upper troposphere comparable to that caused by ozone depletion itself. Our results suggest that changes in the zonal asymmetry of ozone have had important impacts on Southern Hemisphere climate, and will continue to do so in the future.