68 resultados para semantic interoperability
em CentAUR: Central Archive University of Reading - UK
Resumo:
Most of studies on interoperability of systems integration focus on technical and semantic levels, but hardly extend investigations on pragmatic level. Our past work has addressed pragmatic interoperability, which is concerned with the relationship between signs and the potential behaviour and intention of responsible agents. We also define the pragmatic interoperability as a level concerning with the aggregation and optimisation of various business processes for achieving intended purposes of different information systems. This paper, as the extension of our previous research, is to propose an assessment method for measuring pragmatic interoperability of information systems. We firstly propose interoperability analysis framework, which is based on the concept of semiosis. We then develop pragmatic interoperability assessment process from two dimensions including six aspects (informal, formal, technical, substantive, communication, and control). We finally illustrate the assessment process in an example.
Resumo:
Smart healthcare is a complex domain for systems integration due to human and technical factors and heterogeneous data sources involved. As a part of smart city, it is such a complex area where clinical functions require smartness of multi-systems collaborations for effective communications among departments, and radiology is one of the areas highly relies on intelligent information integration and communication. Therefore, it faces many challenges regarding integration and its interoperability such as information collision, heterogeneous data sources, policy obstacles, and procedure mismanagement. The purpose of this study is to conduct an analysis of data, semantic, and pragmatic interoperability of systems integration in radiology department, and to develop a pragmatic interoperability framework for guiding the integration. We select an on-going project at a local hospital for undertaking our case study. The project is to achieve data sharing and interoperability among Radiology Information Systems (RIS), Electronic Patient Record (EPR), and Picture Archiving and Communication Systems (PACS). Qualitative data collection and analysis methods are used. The data sources consisted of documentation including publications and internal working papers, one year of non-participant observations and 37 interviews with radiologists, clinicians, directors of IT services, referring clinicians, radiographers, receptionists and secretary. We identified four primary phases of data analysis process for the case study: requirements and barriers identification, integration approach, interoperability measurements, and knowledge foundations. Each phase is discussed and supported by qualitative data. Through the analysis we also develop a pragmatic interoperability framework that summaries the empirical findings and proposes recommendations for guiding the integration in the radiology context.
Resumo:
Learning Objects offer flexibility and adaptability for users to request personalised information for learning. There are standards to guide the development of learning objects. However, individual developers may customise these standards for serving different purposes when defining, describing, managing and providing learning objects, which are normally stored in heterogeneous repositories. Barriers to interoperability hinder sharing of learning services and subsequently affect quality of instructional design as learners expect to be able to receive their personalised learning content. All these impose difficulties to the users in getting the right information from the right sources. This paper investigates the interoperability issues in eLearning services management and provision and presents an approach to resolve interoperability at three levels.
Resumo:
In this paper, we introduce a novel high-level visual content descriptor which is devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt to bridge the so called “semantic gap”. The proposed image feature vector model is fundamentally underpinned by the image labelling framework, called Collaterally Confirmed Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts of the images with the state-of-the-art low-level image processing and visual feature extraction techniques for automatically assigning linguistic keywords to image regions. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicates that our proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models.
Resumo:
The storage and processing capacity realised by computing has lead to an explosion of data retention. We now reach the point of information overload and must begin to use computers to process more complex information. In particular, the proposition of the Semantic Web has given structure to this problem, but has yet realised practically. The largest of its problems is that of ontology construction; without a suitable automatic method most will have to be encoded by hand. In this paper we discus the current methods for semi and fully automatic construction and their current shortcomings. In particular we pay attention the application of ontologies to products and the particle application of the ontologies.
Resumo:
Currently many ontologies are available for addressing different domains. However, it is not always possible to deploy such ontologies to support collaborative working, so that their full potential can be exploited to implement intelligent cooperative applications capable of reasoning over a network of context-specific ontologies. The main problem arises from the fact that presently ontologies are created in an isolated way to address specific needs. However we foresee the need for a network of ontologies which will support the next generation of intelligent applications/devices, and, the vision of Ambient Intelligence. The main objective of this paper is to motivate the design of a networked ontology (Meta) model which formalises ways of connecting available ontologies so that they are easy to search, to characterise and to maintain. The aim is to make explicit the virtual and implicit network of ontologies serving the Semantic Web.
Resumo:
In general, ranking entities (resources) on the Semantic Web (SW) is subject to importance, relevance, and query length. Few existing SW search systems cover all of these aspects. Moreover, many existing efforts simply reuse the technologies from conventional Information Retrieval (IR), which are not designed for SW data. This paper proposes a ranking mechanism, which includes all three categories of rankings and are tailored to SW data.
Resumo:
Numerous linguistic operations have been assigned to cortical brain areas, but the contributions of subcortical structures to human language processing are still being discussed. Using simultaneous EEG recordings directly from deep brain structures and the scalp, we show that the human thalamus systematically reacts to syntactic and semantic parameters of auditorily presented language in a temporally interleaved manner in coordination with cortical regions. In contrast, two key structures of the basal ganglia, the globus pallidus internus and the subthalamic nucleus, were not found to be engaged in these processes. We therefore propose that syntactic and semantic language analysis is primarily realized within cortico-thalamic networks, whereas a cohesive basal ganglia network is not involved in these essential operations of language analysis.
Resumo:
Previous functional imaging studies have shown that facilitated processing of a visual object on repeated, relative to initial, presentation (i.e., repetition priming) is associated with reductions in neural activity in multiple regions, including fusiforin/lateral occipital cortex. Moreover, activity reductions have been found, at diminished levels, when a different exemplar of an object is presented on repetition. In one previous study, the magnitude of diminished priming across exemplars was greater in the right relative to the left fusiform, suggesting greater exemplar specificity in the right. Another previous study, however, observed fusiform lateralization modulated by object viewpoint, but not object exemplar. The present fMRI study sought to determine whether the result of differential fusiform responses for perceptually different exemplars could be replicated. Furthermore, the role of the left fusiform cortex in object recognition was investigated via the inclusion of a lexical/semantic manipulation. Right fusiform cortex showed a significantly greater effect of exemplar change than left fusiform, replicating the previous result of exemplar-specific fusiform lateralization. Right fusiform and lateral occipital cortex were not differentially engaged by the lexical/semantic manipulation, suggesting that their role in visual object recognition is predominantly in the. C visual discrimination of specific objects. Activation in left fusiform cortex, but not left lateral occipital cortex, was modulated by both exemplar change and lexical/semantic manipulation, with further analysis suggesting a posterior-to-anterior progression between regions involved in processing visuoperceptual and lexical/semantic information about objects. The results are consistent with the view that the right fusiform plays a greater role in processing specific visual form information about objects, whereas the left fusiform is also involved in lexical/semantic processing. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Decoding emotional prosody is crucial for successful social interactions, and continuous monitoring of emotional intent via prosody requires working memory. It has been proposed by Ross and others that emotional prosody cognitions in the right hemisphere are organized in an analogous fashion to propositional language functions in the left hemisphere. This study aimed to test the applicability of this model in the context of prefrontal cortex working memory functions. BOLD response data were therefore collected during performance of two emotional working memory tasks by participants undergoing fMRI. In the prosody task, participants identified the emotion conveyed in pre-recorded sentences, and working memory load was manipulated in the style of an N-back task. In the matched lexico-semantic task, participants identified the emotion conveyed by sentence content. Block-design neuroimaging data were analyzed parametrically with SPM5. At first, working memory for emotional prosody appeared to be right-lateralized in the PFC, however, further analyses revealed that it shared much bilateral prefrontal functional neuroanatomy with working memory for lexico-semantic emotion. Supplementary separate analyses of males and females suggested that these language functions were less bilateral in females, but their inclusion did not alter the direction of laterality. It is concluded that Ross et al.'s model is not applicable to prefrontal cortex working memory functions, that evidence that working memory cannot be subdivided in prefrontal cortex according to material type is increased, and that incidental working memory demands may explain the frontal lobe involvement in emotional prosody comprehension as revealed by neuroimaging studies. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
We frequently encounter conflicting emotion cues. This study examined how the neural response to emotional prosody differed in the presence of congruent and incongruent lexico-semantic cues. Two hypotheses were assessed: (i) decoding emotional prosody with conflicting lexico-semantic cues would activate brain regions associated with cognitive conflict (anterior cingulate and dorsolateral prefrontal cortex) or (ii) the increased attentional load of incongruent cues would modulate the activity of regions that decode emotional prosody (right lateral temporal cortex). While the participants indicated the emotion conveyed by prosody, functional magnetic resonance imaging data were acquired on a 3T scanner using blood oxygenation level-dependent contrast. Using SPM5, the response to congruent cues was contrasted with that to emotional prosody alone, as was the response to incongruent lexico-semantic cues (for the 'cognitive conflict' hypothesis). The right lateral temporal lobe region of interest analyses examined modulation of activity in this brain region between these two contrasts (for the 'prosody cortex' hypothesis). Dorsolateral prefrontal and anterior cingulate cortex activity was not observed, and neither was attentional modulation of activity in right lateral temporal cortex activity. However, decoding emotional prosody with incongruent lexico-semantic cues was strongly associated with left inferior frontal gyrus activity. This specialist form of conflict is therefore not processed by the brain using the same neural resources as non-affective cognitive conflict and neither can it be handled by associated sensory cortex alone. The recruitment of inferior frontal cortex may indicate increased semantic processing demands but other contributory functions of this region should be explored.