6 resultados para self-imaging
em CentAUR: Central Archive University of Reading - UK
Resumo:
The 'self' is a complex multidimensional construct deeply embedded and in many ways defined by our relations with the social world. Individuals with autism are impaired in both self-referential and other-referential social cognitive processing. Atypical neural representation of the self may be a key to understanding the nature of such impairments. Using functional magnetic resonance imaging we scanned adult males with an autism spectrum condition and age and IQ-matched neurotypical males while they made reflective mentalizing or physical judgements about themselves or the British Queen. Neurotypical individuals preferentially recruit the middle cingulate cortex and ventromedial prefrontal cortex in response to self compared with other-referential processing. In autism, ventromedial prefrontal cortex responded equally to self and other, while middle cingulate cortex responded more to other-mentalizing than self-mentalizing. These atypical responses occur only in areas where self-information is preferentially processed and does not affect areas that preferentially respond to other-referential information. In autism, atypical neural self-representation was also apparent via reduced functional connectivity between ventromedial prefrontal cortex and areas associated with lower level embodied representations, such as ventral premotor and somatosensory cortex. Furthermore, the magnitude of neural self-other distinction in ventromedial prefrontal cortex was strongly related to the magnitude of early childhood social impairments in autism. Individuals whose ventromedial prefrontal cortex made the largest distinction between mentalizing about self and other were least socially impaired in early childhood, while those whose ventromedial prefrontal cortex made little to no distinction between mentalizing about self and other were the most socially impaired in early childhood. These observations reveal that the atypical organization of neural circuitry preferentially coding for self-information is a key mechanism at the heart of both self-referential and social impairments in autism.
Resumo:
Since the advent of wide-angle imaging of the inner heliosphere, a plethora of techniques have been developed to investigate the three-dimensional structure and kinematics of solar wind transients, such as coronal mass ejections, from their signatures in single- and multi-spacecraft imaging observations. These techniques, which range from the highly complex and computationally intensive to methods based on simple curve fitting, all have their inherent advantages and limitations. In the analysis of single-spacecraft imaging observations, much use has been made of the fixed φ fitting (FPF) and harmonic mean fitting (HMF) techniques, in which the solar wind transient is considered to be a radially propagating point source (fixed φ, FP, model) and a radially expanding circle anchored at Sun centre (harmonic mean, HM, model), respectively. Initially, we compare the radial speeds and propagation directions derived from application of the FPF and HMF techniques to a large set of STEREO/Heliospheric Imager (HI) observations. As the geometries on which these two techniques are founded constitute extreme descriptions of solar wind transients in terms of their extent along the line of sight, we describe a single-spacecraft fitting technique based on a more generalized model for which the FP and HM geometries form the limiting cases. In addition to providing estimates of a transient’s speed and propagation direction, the self-similar expansion fitting (SSEF) technique provides, in theory, the capability to estimate the transient’s angular extent in the plane orthogonal to the field of view. Using the HI observations, and also by performing a Monte Carlo simulation, we assess the potential of the SSEF technique.
How self-determined choice facilitates performance: a key role of the ventromedial prefrontal cortex
Resumo:
Recent studies have documented that self-determined choice does indeed enhance performance. However, the precise neural mechanisms underlying this effect are not well understood. We examined the neural correlates of the facilitative effects of self-determined choice using functional magnetic resonance imaging (fMRI). Participants played a game-like task involving a stopwatch with either a stopwatch they selected (self-determined-choice condition) or one they were assigned without choice (forced-choice condition). Our results showed that self-determined choice enhanced performance on the stopwatch task, despite the fact that the choices were clearly irrelevant to task difficulty. Neuroimaging results showed that failure feedback, compared with success feedback, elicited a drop in the vmPFC activation in the forced-choice condition, but not in the self-determined-choice condition, indicating that negative reward value associated with the failure feedback vanished in the self-determined-choice condition. Moreover, the vmPFC resilience to failure in the self-determined-choice condition was significantly correlated with the increased performance. Striatal responses to failure and success feedback were not modulated by the choice condition, indicating the dissociation between the vmPFC and striatal activation pattern. These findings suggest that the vmPFC plays a unique and critical role in the facilitative effects of self-determined choice on performance.
Resumo:
Amyloid fibrils are formed by a model surfactant-like peptide (Ala)10-(His)6 containing a hexahistidine tag. This peptide undergoes a remarkable two-step self-assembly process with two distinct critical aggregation concentrations (cac’s), probed by fluorescence techniques. A micromolar range cac is ascribed to the formation of prefibrillar structures, whereas a millimolar range cac is associated with the formation of well-defined but more compact fibrils. We examine the labeling of these model tagged amyloid fibrils using Ni-NTA functionalized gold nanoparticles (Nanogold). Successful labeling is demonstrated via electron microscopy imaging. The specificity of tagging does not disrupt the β-sheet structure of the peptide fibrils. Binding of fibrils and Nanogold is found to influence the circular dichroism associated with the gold nanoparticle plasmon absorption band. These results highlight a new approach to the fabrication of functionalized amyloid fibrils and the creation of peptide/nanoparticle hybrid materials.
Resumo:
Electronically complementary, low molecular weight polymers that self-assemble through tuneable π-π stacking interactions to form extended supramolecular polymer networks have been developed for inkjet printing applications and successfully deposited using three different printing techniques. Sequential overprinting of the complementary components results in supramolecular network formation through complexation of π-electron rich pyrenyl or perylenyl chain-ends in one component with π-electron deficient naphthalene diimide residues in a chain-folding polyimide. The complementary π-π stacked polymer blends generate strongly coloured materials as a result of charge-transfer absorptions in the visible spectrum, potentially negating the need for pigments or dyes in the ink formulation. Indeed, the final colour of the deposited material can be tailored by changing varying the end-groups of the π electron rich polymer component. Piezoelectric printing techniques were employed in a proof of concept study to allow characterisation of the materials deposited, and a thermal inkjet printer adapted with imaging software enabled a detailed analysis of the ink-drops as they formed, and of their physical properties. Finally, continuous inkjet printing allowed greater volumes of material to be deposited, on a variety of different substrate surfaces, and demonstrated the utility and versatility of this novel type of ink for industrial applications.
Resumo:
Dyspnea is the major source of disability in chronic obstructive pulmonary disease (COPD). In COPD, environmental cues (e.g. the prospect of having to climb stairs) become associated with dyspnea, and may trigger dyspnea even before physical activity commences. We hypothesised that brain activation relating to such cues would be different between COPD patients and healthy controls, reflecting greater engagement of emotional mechanisms in patients. Methods: Using FMRI, we investigated brain responses to dyspnea-related word cues in 41 COPD patients and 40 healthy age-matched controls. We combined these findings with scores of self-report questionnaires thus linking the FMRI task with clinically relevant measures. This approach was adapted from studies in pain that enables identification of brain networks responsible for pain processing despite absence of a physical challenge. Results: COPD patients demonstrate activation in the medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC) which correlated with the visual analogue scale (VAS) response to word cues. This activity independently correlated with patient-reported questionnaires of depression, fatigue and dyspnea vigilance. Activation in the anterior insula, lateral prefrontal cortex (lPFC) and precuneus correlated with the VAS dyspnea scale but not the questionnaires. Conclusions: Our findings suggest that engagement of the brain's emotional circuitry is important for interpretation of dyspnea-related cues in COPD, and is influenced by depression, fatigue, and vigilance. A heightened response to salient cues is associated with increased symptom perception in chronic pain and asthma, and our findings suggest such mechanisms may be relevant in COPD.