39 resultados para secure platform
em CentAUR: Central Archive University of Reading - UK
Resumo:
Aerosols from anthropogenic and natural sources have been recognized as having an important impact on the climate system. However, the small size of aerosol particles (ranging from 0.01 to more than 10 μm in diameter) and their influence on solar and terrestrial radiation makes them difficult to represent within the coarse resolution of general circulation models (GCMs) such that small-scale processes, for example, sulfate formation and conversion, need parameterizing. It is the parameterization of emissions, conversion, and deposition and the radiative effects of aerosol particles that causes uncertainty in their representation within GCMs. The aim of this study was to perturb aspects of a sulfur cycle scheme used within a GCM to represent the climatological impacts of sulfate aerosol derived from natural and anthropogenic sulfur sources. It was found that perturbing volcanic SO2 emissions and the scavenging rate of SO2 by precipitation had the largest influence on the sulfate burden. When these parameters were perturbed the sulfate burden ranged from 0.73 to 1.17 TgS for 2050 sulfur emissions (A2 Special Report on Emissions Scenarios (SRES)), comparable with the range in sulfate burden across all the Intergovernmental Panel on Climate Change SRESs. Thus, the results here suggest that the range in sulfate burden due to model uncertainty is comparable with scenario uncertainty. Despite the large range in sulfate burden there was little influence on the climate sensitivity, which had a range of less than 0.5 K across the ensemble. We hypothesize that this small effect was partly associated with high sulfate loadings in the control phase of the experiment.
Resumo:
Collaborative software is usually thought of as providing audio-video conferencing services, application/desktop sharing, and access to large content repositories. However mobile device usage is characterized by users carrying out short and intermittent tasks sometimes referred to as 'micro-tasking'. Micro-collaborations are not well supported by traditional groupware systems and the work in this paper seeks out to address this. Mico is a system that provides a set of application level peer-to-peer services for the ad-hoc formation and facilitation of collaborative groups across a diverse mobile device domain. The system builds on the Java ME bindings of the JXTA P2P protocols, and is designed with an approach to use the lowest common denominators that are required for collaboration between varying degrees of mobile device capability. To demonstrate how our platform facilitates application development, we built an exemplary set of demonstration applications and include code examples here to illustrate the ease and speed afforded when developing collaborative software with Mico.
Resumo:
Robotic and manual methods have been used to obtain identification of significantly changing proteins regulated when Schizosaccharomyces pombe is exposed to oxidative stress. Differently treated S. pombe cells were lysed, labelled with CyDye and analysed by two-dimensional difference gel electrophoresis. Gel images analysed off-line, using the DeCyder image analysis software [GE Healthcare, Amersham, UK] allowed selection of significantly regulated proteins. Proteins displaying differential expression were excised robotically for manual digestion and identified by matrix-assisted laser desorption/ionisation - mass spectrometry (MALDI-MS). Additionally the same set of proteins displaying differential expression were automatically cut and digested using a prototype robotic platform. Automated MALDI-MS, peak label assignment and database searching were utilised to identify as many proteins as possible. The results achieved by the robotic system were compared to manual methods. The identification of all significantly altered proteins provides an annotated peroxide stress-related proteome that can be used as a base resource against which other stress-induced proteomic changes can be compared.
Resumo:
Cyclo-condensation of aroyl hydrazides with the cationic tungsten-dichlorodiazomethane complex [BrW(dppe)(2)(N2CCI2)](+) affords neutral oxadiazolyldiazenido(1-) complexes which react readily with a wide range of transition and non-transition metal species to afford a novel series of crystallographically-characterised heteropolynuclear complexes containing bridging oxadiazolyldiazenido(1-) ligands.
Resumo:
Robotic and manual methods have been used to obtain identification of significantly changing proteins regulated when Schizosaccharomyces pombe is exposed to oxidative stress. Differently treated S. pombe cells were lysed, labelled with CyDye (TM) and analysed by two-dimensional difference gel. electrophoresis. Gel images analysed off-line, using the DeCyder (TM) image analysis software [GE Healthcare, Amersham, UK] allowed selection of significantly regulated proteins. Proteins displaying differential expression were excised robotically for manual digestion and identified by matrix-assisted laser desorption/ionisation - mass spectrometry (MALDI-MS). Additionally the same set of proteins displaying differential expression were automatically cut and digested using a prototype robotic platform. Automated MALDI-MS, peak label assignment and database searching were utilised to identify as many proteins as possible. The results achieved by the robotic system were compared to manual methods. The identification of all significantly altered proteins provides an annotated peroxide stress-related proteome that can be used as a base resource against which other stress-induced proteomic changes can be compared.
Resumo:
Password Authentication Protocol (PAP) is widely used in the Wireless Fidelity Point-to-Point Protocol to authenticate an identity and password for a peer. This paper uses a new knowledge-based framework to verify the PAP protocol and a fixed version. Flaws are found in both the original and the fixed versions. A new enhanced protocol is provided and the security of it is proved The whole process is implemented in a mechanical reasoning platform, Isabelle. It only takes a few seconds to find flaws in the original and the fixed protocol and to verify that the enhanced version of the PAP protocol is secure.
Resumo:
Driven by new network and middleware technologies such as mobile broadband, near-field communication, and context awareness the so-called ambient lifestyle will foster innovative use cases in building automation, healthcare and agriculture. In the EU project Hydra1 highlevel security, trust and privacy concerns such as loss of control, profiling and surveillance are considered at the outset. At the end of this project the Hydra middleware development platform will have been designed so as to enable developers to realise secure ambient scenarios especially in the user domains of building automation, healthcare, and agriculture. This paper gives a short introduction to the Hydra project, its user domains and its approach to ensure security by design. Based on the results of a focus group analysis of the building automation domain typical threats are evaluated and their risks are assessed. Then, specific security requirements with respect to security, privacy, and trust are derived in order to incorporate them into the Hydra Security Meta Model. How concepts such as context security, semantic security, and virtualisation support the overall Hydra approach will be introduced and illustrated on the basis of a technical building automation scenario.
Resumo:
Driven by new network and middleware technologies such as mobile broadband, near-field communication, and context awareness the so-called ambient lifestyle will foster innovative use cases in different domains. In the EU project Hydra high-level security, trust and privacy concerns such as loss of control, profiling and surveillance are considered at the outset. At the end of this project the. Hydra middleware development platform will have been designed so as to enable developers to realise secure ambient scenarios. This paper gives a short introduction to the Hydra project and its approach to ensure security by design. Based on the results of a focus group analysis of the user domain "building automation" typical threats are evaluated and their risks are assessed. Then, specific security requirements with respect to security, privacy, and trust are derived in order to incorporate them into the Hydra Security Meta-Model. How concepts such as context, semantic resolution of security, and virtualisation support the overall Hydra approach will be introduced and illustrated on the basis of it technical building automation scenario.
Resumo:
One of the essential needs to implement a successful e-Government web application is security. Web application firewalls (WAF) are the most important tool to secure web applications against the increasing number of web application attacks nowadays. WAFs work in different modes depending on the web traffic filtering approach used, such as positive security mode, negative security mode, session-based mode, or mixed modes. The proposed WAF, which is called (HiWAF), is a web application firewall that works in three modes: positive, negative and session based security modes. The new approach that distinguishes this WAF among other WAFs is that it utilizes the concepts of Artificial Intelligence (AI) instead of regular expressions or other traditional pattern matching techniques as its filtering engine. Both artificial neural networks and fuzzy logic concepts will be used to implement a hybrid intelligent web application firewall that works in three security modes.