5 resultados para scavenging effect

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soy isoflavones have been extensively studied because of their possible benefits to human health. Genistein, the major isoflavone aglycone, has received most attention; however, it undergoes extensive metabolism (e.g. conjugation with sulfuric acid) in the gut and liver, which may affect its biological proper-ties. This study investigated the antioxidant activity and free radical-scavenging properties of genistein, genistein-4'-sulfate and genistein-4'-7-disulfate as well as their effect on platelet aggregation and monocyte and endothelial function. Electron spin resonance spectroscopy (ESR) and spin trapping data and other standard antioxidant assays indicated that genistein is a relatively weak antioxidant compared to quercetin and that its sulfated metabolites are even less effective. Furthermore, genistein-4'-sulfate was less potent than genistem, and genistein-4'-7-disulfate even less potent, at inhibiting collagen-induced platelet aggregation, nitric oxide (NO) production by macrophages, and secretion by primary human endothelial cells of monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1). The current data suggest that sulfation of genistein, with the associated loss of hydroxyl groups, decreases its antioxidant activity and its effect on platelet aggregation, inflammation, cell adhesion and chemotaxis. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soy isoflavones have been extensively studied because of their possible benefits to human health. Genistein, the major isoflavone aglycone, has received most attention; however, it undergoes extensive metabolism (e.g. conjugation with sulfuric acid) in the gut and liver, which may affect its biological proper-ties. This study investigated the antioxidant activity and free radical-scavenging properties of genistein, genistein-4'-sulfate and genistein-4'-7-disulfate as well as their effect on platelet aggregation and monocyte and endothelial function. Electron spin resonance spectroscopy (ESR) and spin trapping data and other standard antioxidant assays indicated that genistein is a relatively weak antioxidant compared to quercetin and that its sulfated metabolites are even less effective. Furthermore, genistein-4'-sulfate was less potent than genistem, and genistein-4'-7-disulfate even less potent, at inhibiting collagen-induced platelet aggregation, nitric oxide (NO) production by macrophages, and secretion by primary human endothelial cells of monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1). The current data suggest that sulfation of genistein, with the associated loss of hydroxyl groups, decreases its antioxidant activity and its effect on platelet aggregation, inflammation, cell adhesion and chemotaxis. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of a commercial cellulase preparation on phenol liberation and extraction from black currant pomace was studied. The enzyme used, which was from Trichoderma spp., was an effective "cellulase-hemicellulase" blend with low P-glucosidase activity and various side activities. Enzyme treatment significantly increased plant cell wall polysaccharide degradation as well as increasing the availability of phenols for subsequent methanolic extraction. The release of anthocyanins and other phenols was dependent on reaction parameters, including enzyme dosage, temperature, and time. At 50 degrees C, anthocyanin yields following extraction increased by 44% after 3 h and by 60% after 1.5 h for the lower and higher enzyme/substrate ratio (E/S), respectively. Phenolic acids were more easily released in the hydrolytic mixture (supernatant) and, although a short hydrolysis time was adequate to release hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCA) required longer times. The highest E/S value of 0.16 gave a significant increase of flavonol yields in all samples. The antioxidant capacity of extracts, assessed by scavenging of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation, the oxygen radical absorbance capacity, and the ferric reducing antioxidant potential depended on the concentration and composition of the phenols present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free phenolic acids were extracted from a laboratory-produced sample of green malt. Aliquots of the phenolic acid extract were heated from 25 to 110°C over 27 h, representative of a commercial kilning regime. Samples were taken at regular intervals throughout heating and were assessed for changes in antioxidant activity by both the 2,2(prime)-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical-cation scavenging (ABTS(^•+)) and the ferric-reducing antioxidant potential (FRAP) assays. Changes in the profile of the phenolic acids of the extracts were determined by HPLC. Overall, there was a decrease in both antioxidant activity level and the level of phenolic acids, but as the temperature increased from 80 to 100°C, there was an increase in both the antioxidant activity level and the level of detected phenolic acids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sunflower oil-in-water emulsions containing TBHQ, caffeic acid, epigallocatechin gallate (EGCG), or 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), both with and without BSA, were stored at 50 and 30degreesC. Oxidation of the oil was monitored by determination of the PV, conjugated diene content, and hexanal formation. Emulsions containing EGCG, caffeic acid, and, to a lesser extent, Trolox were much more stable during storage in the presence of BSA than in its absence even though BSA itself did not provide an antioxidant effect. BSA did not have a synergistic effect on the antioxidant activity of TBHQ. The BSA structure changed, with a considerable loss of fluorescent tryptophan groups during storage of solutions containing BSA and antioxidants, and a BSA-antioxidant adduct with radical-scavenging activity was formed. The highest radical-scavenging activity observed was for the isolated protein from a sample containing EGCG and BSA incubated at 30degreesC for 10 d. This fraction contained unchanged BSA as well as BSA-antioxidant adduct, but 95.7% of the initial fluorescence had been lost, showing that most of the BSA had been altered. It can be concluded that BSA exerts its synergistic effect with antioxidants because of formation of a protein-antioxidant adduct during storage, which is concentrated at the oil-water interface owing to the surface-active nature of the protein.