7 resultados para sample mean
em CentAUR: Central Archive University of Reading - UK
Resumo:
The steadily accumulating literature on technical efficiency in fisheries attests to the importance of efficiency as an indicator of fleet condition and as an object of management concern. In this paper, we extend previous work by presenting a Bayesian hierarchical approach that yields both efficiency estimates and, as a byproduct of the estimation algorithm, probabilistic rankings of the relative technical efficiencies of fishing boats. The estimation algorithm is based on recent advances in Markov Chain Monte Carlo (MCMC) methods—Gibbs sampling, in particular—which have not been widely used in fisheries economics. We apply the method to a sample of 10,865 boat trips in the US Pacific hake (or whiting) fishery during 1987–2003. We uncover systematic differences between efficiency rankings based on sample mean efficiency estimates and those that exploit the full posterior distributions of boat efficiencies to estimate the probability that a given boat has the highest true mean efficiency.
Resumo:
The steadily accumulating literature on technical efficiency in fisheries attests to the importance of efficiency as an indicator of fleet condition and as an object of management concern. In this paper, we extend previous work by presenting a Bayesian hierarchical approach that yields both efficiency estimates and, as a byproduct of the estimation algorithm, probabilistic rankings of the relative technical efficiencies of fishing boats. The estimation algorithm is based on recent advances in Markov Chain Monte Carlo (MCMC) methods— Gibbs sampling, in particular—which have not been widely used in fisheries economics. We apply the method to a sample of 10,865 boat trips in the US Pacific hake (or whiting) fishery during 1987–2003. We uncover systematic differences between efficiency rankings based on sample mean efficiency estimates and those that exploit the full posterior distributions of boat efficiencies to estimate the probability that a given boat has the highest true mean efficiency.
Resumo:
This study assesses Autism-Spectrum Quotient (AQ) scores in a ‘big data’ sample collected through the UK Channel 4 television website, following the broadcasting of a medical education program. We examine correlations between the AQ and age, sex, occupation, and UK geographic region in 450,394 individuals. We predicted that age and geography would not be correlated with AQ, whilst sex and occupation would have a correlation. Mean AQ for the total sample score was m = 19.83 (SD = 8.71), slightly higher than a previous systematic review of 6,900 individuals in a non-clinical sample (mean of means = 16.94) This likely reflects that this big-data sample includes individuals with autism who in the systematic review score much higher (mean of means = 35.19). As predicted, sex and occupation differences were observed: on average, males (m = 21.55, SD = 8.82) scored higher than females (m = 18.95; SD = 8.52), and individuals working in a STEM career (m = 21.92, SD = 8.92) scored higher than individuals non-STEM careers (m = 18.92, SD = 8.48). Also as predicted, age and geographic region were not meaningfully correlated with AQ. These results support previous findings relating to sex and STEM careers in the largest set of individuals for which AQ scores have been reported and suggest the AQ is a useful self-report measure of autistic traits
Resumo:
The behavior of the Asian summer monsoon is documented and compared using the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA) and the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) Reanalysis. In terms of seasonal mean climatologies the results suggest that, in several respects, the ERA is superior to the NCEP-NCAR Reanalysis. The overall better simulation of the precipitation and hence the diabatic heating field over the monsoon domain in ERA means that the analyzed circulation is probably nearer reality. In terms of interannual variability, inconsistencies in the definition of weak and strong monsoon years based on typical monsoon indices such as All-India Rainfall (AIR) anomalies and the large-scale wind shear based dynamical monsoon index (DMI) still exist. Two dominant modes of interannual variability have been identified that together explain nearly 50% of the variance. Individually, they have many features in common with the composite flow patterns associated with weak and strong monsoons, when defined in terms of regional AIR anomalies and the large-scale DMI. The reanalyses also show a common dominant mode of intraseasonal variability that describes the latitudinal displacement of the tropical convergence zone from its oceanic-to-continental regime and essentially captures the low-frequency active/break cycles of the monsoon. The relationship between interannual and intraseasonal variability has been investigated by considering the probability density function (PDF) of the principal component of the dominant intraseasonal mode. Based on the DMI, there is an indication that in years with a weaker monsoon circulation, the PDF is skewed toward negative values (i,e., break conditions). Similarly, the PDFs for El Nino and La Nina years suggest that El Nino predisposes the system to more break spells, although the sample size may limit the statistical significance of the results.
Resumo:
Recent developments in contracting practice in the UK have built upon recommendations contained in highprofile reports, such as those by Latham and Egan. However, the New Engineering Contract (NEC), endorsed by Latham, is based upon principles of contract drafting that seem open to question. Any contract operates in the context of its legislative environment and current working practices. This report identifies eight contentious hypotheses in the literature on construction contracts and tests their validity in a sample survey that attracted 190 responses. The survey shows, among other things, that while partnership is a positive and useful idea, authoritative contract management is considered more effective and that “win-win” contracts, while desirable, are basically impractical. Further, precision and fairness in contracts are not easy to achieve simultaneously. While participants should know what is in their contracts, they should not routinely resort to legal action; and standard-form contracts should not seek to be universally applicable. Fundamental changes to drafting policy should be undertaken within the context of current legal contract doctrine and with a sensitivity to the way that contracts are used in contemporary practice. Attitudes to construction contracting may seem to be changing on the surface, but detailed analysis of what lies behind apparent agreement on new ways of working reveals that attitudes are changing much more slowly than they appear to be.
Resumo:
Mean field models (MFMs) of cortical tissue incorporate salient, average features of neural masses in order to model activity at the population level, thereby linking microscopic physiology to macroscopic observations, e.g., with the electroencephalogram (EEG). One of the common aspects of MFM descriptions is the presence of a high-dimensional parameter space capturing neurobiological attributes deemed relevant to the brain dynamics of interest. We study the physiological parameter space of a MFM of electrocortical activity and discover robust correlations between physiological attributes of the model cortex and its dynamical features. These correlations are revealed by the study of bifurcation plots, which show that the model responses to changes in inhibition belong to two archetypal categories or “families”. After investigating and characterizing them in depth, we discuss their essential differences in terms of four important aspects: power responses with respect to the modeled action of anesthetics, reaction to exogenous stimuli such as thalamic input, and distributions of model parameters and oscillatory repertoires when inhibition is enhanced. Furthermore, while the complexity of sustained periodic orbits differs significantly between families, we are able to show how metamorphoses between the families can be brought about by exogenous stimuli. We here unveil links between measurable physiological attributes of the brain and dynamical patterns that are not accessible by linear methods. They instead emerge when the nonlinear structure of parameter space is partitioned according to bifurcation responses. We call this general method “metabifurcation analysis”. The partitioning cannot be achieved by the investigation of only a small number of parameter sets and is instead the result of an automated bifurcation analysis of a representative sample of 73,454 physiologically admissible parameter sets. Our approach generalizes straightforwardly and is well suited to probing the dynamics of other models with large and complex parameter spaces.
Resumo:
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10–90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie above the CMIP5 carbon cycle range. These high-end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real-world climate-sensitivity constraints which, if achieved, would lead to reductions on the upper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present-day observables and future changes, while the large spread of future-projected changes highlights the ongoing need for such work.