9 resultados para salicylic acid.
em CentAUR: Central Archive University of Reading - UK
Resumo:
The two air-stable manganese(II) salicylate complexes [Mn2(Hsal)4(H2O)4]1 and polymeric [{Mn2(sal)2(Hsal)(H2O)(H3O)(py)4·2py}n]2(H2sal = salicylic acid and py = pyridine) have been synthesised easily, and their crystal structures determined. Both contain unsymmetrically bridging salicylate ligands. In the presence of added pyridine 1 and 2 vigorously catalyse the disproportionation of H2O2.
Resumo:
Plants can respond to damage by pests with both induced direct defences and indirect defences by the attraction of their natural enemies. Foliar application of several plant-derived chemicals, such as salicylic acid and oxalic acid, can induce these defence mechanisms. The effect of acetylsalicylic acid and oxalic acid on the aphid Myzus persicae Sulzer (Homoptera: Aphididae) and its parasitoid Aphidius colemani Viereck (Hymenoptera: Aphidiidae) was investigated. Experiments were carried out with direct application of acetylsalicylic and oxalic acids on these insects, as well as choice and no-choice tests using foliar application of both chemicals on Brussels sprouts plants, Brassica oleracea var. gemmifera L. (Brassicaceae). Parasitoids were given a choice between treated and untreated plants for oviposition, and the effects of the chemicals on aphid and parasitoid development were determined. Although direct application of both chemicals increased aphid mortality, their foliar application did not induce resistance against aphids. The foliar application of such compounds, even in low concentration as shown in the choice tests, has the potential to induce indirect plant defences against aphids by encouraging aphid parasitisation. Although the direct application of both chemicals reduced parasitoid emergence from their hosts, the foliar application of acetylsalicylic acid and low concentrations of oxalic acid did not have a negative effect on parasitoid emergence ability. However, 10 mm oxalic acid reduced the number of emerged parasitoids in no-choice experiments. This study shows that foliar application of acetylsalicylic and oxalic acids has the potential to encourage aphid parasitisation, but care is needed as high concentrations of oxalic acid can have a negative effect on these beneficial organisms.
Resumo:
Enhanced phytoextraction proposes the use of soil amendments to increase the heavy-metal content of above-ground harvestable plant tissues. This study compares the effect of synthetic aminopolycarboxylic acids [ethylenediamine tetraacetatic acid (EDTA), nitriloacetic acid (NTA), and diethylenetriamine pentaacetic acid (DTPA)] with a number of biodegradable, low-molecular weight, organic acids (citric acid, ascorbic acid, oxalic acid, salicylic acid, and NH4 acetate) as potential soil amendments for enhancing phytoextraction of heavy metals (Cu, Zn, Cd, Pb, and Ni) by Zea mays. The treatments in this study were applied at a dose of 2 mmol/kg(-1) 1 d before sowing. To compare possible effects between presow and postgermination treatments, a second smaller experiment was conducted in which EDTA, citric acid, and NH4 acetate were added 10 d after germination as opposed to 1 d before sowing. The soil used in this screening was a moderately contaminated topsoil derived from a dredged sediment disposal site. This site has been in an oxidized state for more than 8 years before being used in this research. The high carbonate, high organic matter, and high clay content characteristic to this type of sediment are thought to suppress heavy-metal phytoavailability. Both EDTA and DTPA resulted in increased levels of heavy metals in the above-ground biomass. However, the observed increases in uptake were not as large as reported in the literature. Neither the NTA nor organic acid treatments had any significant effect on uptake when applied prior to sowing. This was attributed to the rapid mineralization of these substances and the relatively low doses applied. The generally low extraction observed in this experiment restricts the use of phytoextraction as an effective remediation alternative under the current conditions, with regard to amendments used, applied dose (2 mmol/kg(-1) soil), application time (presow), plant species (Zea mays), and sediment (calcareous clayey soil) under study.
Resumo:
Two field trials were conducted using established apple (Malus cv. Golden Delicious) and pear (Pyrus communis 'Williams' Bon Chretien') to assess the efficacy of three commercially available systemic inducing resistance (SIR) products, Messenger (a.i. Harpin protein), Phoenix (a.i. Potassium phosphite) and Rigel (a.i. Salicylic acid derivative) applied at four different growth stages of tree development (bud break, green cluster, 90% petal fall, early fruitlet) against the foliar pathogens Venturia inaequalis and Venturia pirina which cause apple and pear scab respectively. A conventional synthetic fungicide (penconazole) used within the UK for apple and pear scab control was included for comparison. Little efficacy as scab protectants was demonstrated when each SIR product and penconazole was applied at only two growth stages (bud break, green cluster). However when the above compounds were applied at three or more growth stages efficacy as scab protectants was confirmed. The synthetic fungicide penconazole provided greatest protection against apple and pear scab in both the 2006 and 2007 field trials. There was little difference in the magnitude of scab protection conferred by each SIR agent. Results suggest application of at least three sprays during bud break to early fruitlet formation with an appropriate SIR agent may provide a useful addition to existing methods of apple and pear scab management under field conditions. (C) 2009 Published by Elsevier Ltd.
Resumo:
Current research into indirect phytopathogen–herbivore interactions (i.e., interactions mediated by the host plant) is carried out in two largely independent directions: ecological/mechanistic and molecular. We investigate the origin of these approaches and their strengths and weaknesses. Ecological studies have determined the effect of herbivores and phytopathogens on their host plants and are often correlative: the need for long-term manipulative experiments is pressing. Molecular/cellular studies have concentrated on the role of signaling pathways for systemic induced resistance, mainly involving salicylic acid and jasmonic acid, and more recently the cross-talk between these pathways. This cross-talk demonstrates how interactions between signaling mechanisms and phytohormones could mediate plant–herbivore–pathogen interactions. A bridge between these approaches may be provided by field studies using chemical induction of defense, or investigating whole-organism mechanisms of interactions among the three species. To determine the role of phytohormones in induced resistance in the field, researchers must combine ecological and molecular methods. We discuss how these methods can be integrated and present the concept of “kaleidoscopic defense.” Our recent molecular-level investigations of interactions between the herbivore Gastrophysa viridula and the rust fungus Uromyces rumicis on Rumex obtusifolius, which were well studied at the mechanistic and ecological levels, illustrate the difficulty in combining these different approaches. We suggest that the choice of the right study system (possibly wild relatives of model species) is important, and that molecular studies must consider the environmental conditions under which experiments are performed. The generalization of molecular predictions to ecologically realistic settings will be facilitated by “middle-ground studies” concentrating on the outcomes of the interactions.
Resumo:
Meadowsweet was extracted in water at a range of temperatures (60–100 °C), and the total phenols, tannins, quercetin, salicylic acid content and colour were analysed. The extraction of total phenols followed pseudo first-order kinetics, the rate constant (k) increased from 0.09 ± 0.02 min−1 to 0.44 ± 0.09 min−1, as the temperature increased from 60 to 100 °C. An increase in temperature from 60 to 100 °C increased the concentration of total phenols extracted from 39 ± 2 to 63 ± 3 mg g−1 gallic acid equivalents, although it did not significantly affect the proportion of tannin and non-tannin fractions. The extraction of quercetin and salicyclic acid from meadowsweet also followed pseudo first-order kinetics, the rate constant of both compounds increasing with an increase in temperature up until 90 °C. Therefore, the aqueous extraction of meadowsweet at temperatures at or above 90 °C for 15 min yields extracts high in phenols, which may be added to beverages.
Resumo:
Antiinflammatory compounds in the diet can alleviate excessive inflammation, a factor in the pathogenesis of common diseases such as rheumatoid arthritis, atherosclerosis and diabetes. This study examined three European herbs, chamomile (Matricaria chamomilla), meadowsweet (Filipendula ulmaria L.) and willow bark (Salix alba L.), which have been traditionally used to treat inflammation and their potential for use as antiinflammatory agents. Aqueous herbal extracts and isolated polyphenolic compounds (apigenin, quercetin and salicylic acid, 0–100 μM) were incubated with THP1 macrophages, and interleukin (IL)-1β, IL-6 and tumour necrosis factor-alpha (TNF-) were measured. At concentrations of 10 μM, both apigenin and quercetin reduced IL-6 significantly ( p < 0.05). Apigenin at 10 μM and quercetin at 25 μM reduced TNF- significantly ( p < 0.05). Amongst the herbal extracts, willow bark had the greatest antiinflammatory activity at reducing IL-6 and TNF- production. This was followed by meadowsweet and then chamomile. The lowest effective antiinflammatory concentrations were noncytotoxic (MTT mitochondrial activity assay). The Comet assay, which was used to study the protective effect of the isolated phenols against oxidative damage, showed positive results for all three polyphenols. These are the first findings that demonstrate the antiinflammatory capacity of these herbal extracts.
Resumo:
Polygalacturonase-inhibiting proteins (PGIPs) are extracellular plant inhibitors of fungal endopolygalacturonases (PGs) that belong to the superfamily of Leu-rich repeat proteins. We have characterized the full complement of pgip genes in the bean (Phaseolus vulgaris) genotype BAT93. This comprises four clustered members that span a 50-kb region and, based on their similarity, form two pairs (Pvpgip1/Pvpgip2 and Pvpgip3/Pvpgip4). Characterization of the encoded products revealed both partial redundancy and subfunctionalization against fungal-derived PGs. Notably, the pair PvPGIP3/PvPGIP4 also inhibited PGs of two mirid bugs (Lygus rugulipennis and Adelphocoris lineolatus). Characterization of Pvpgip genes of Pinto bean showed variations limited to single synonymous substitutions or small deletions. A three-amino acid deletion encompassing a residue previously identified as crucial for recognition of PG of Fusarium moniliforme was responsible for the inability of BAT93 PvPGIP2 to inhibit this enzyme. Consistent with the large variations observed in the promoter sequences, reverse transcription-PCR expression analysis revealed that the different family members differentially respond to elicitors, wounding, and salicylic acid. We conclude that both biochemical and regulatory redundancy and subfunctionalization of pgip genes are important for the adaptation of plants to pathogenic fungi and phytophagous insects.
Resumo:
Feeding damage to plants by insect herbivores induces the production of plant volatiles, which are attractive to the herbivores natural enemies. Little is understood about the plant biochemical pathways involved in aphid-induced plant volatile production. The aphid parasitoid Diaeretiella rapae can detect and respond to aphid-induced volatiles produced by Arabidopsis thaliana. When given experience of those volatiles, it can learn those cues and can therefore be used as a novel biosensor to detect them. The pathways involved in aphid-induced volatile production were investigated by comparing the responses of D. rapae to volatiles from a number of different transgenic mutants of A. thaliana, mutated in their octadecanoid, ethylene or salicylic acid wound-response pathways and also from wild-type plants. Plants were either undamaged or infested by the peach-potato aphid, Myzus persicae. It is demonstrated that the octadecanoid pathway and specifically the COI1 gene are required for aphid-induced volatile production. The presence of salicylic acid is also involved in volatile production. Using this model system, in combination with A. thaliana plants with single point gene mutations, has potential for the precise dissection of biochemical pathways involved in the production of aphid-induced volatiles