50 resultados para rotational bands

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some absorption bands of diazomethane vapour between 1950-3500 cm-1 have been measured with very high resolving power. The rotational structure of two parallel bands and of one perpendicular band has been resolved, and approximate values have been determined for the rotational constants. The results are consistent with the geometrical structure usually accepted for this molecule. A peculiarity in the results for the band near 2100 cm-1, together with other facts, leads to the suggestion that a tautomeric form of this molecule exists, HCN=NH, being an isoelectronic analogue of hydrazoic acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rotation lines in the fundamental vibration bands of 13C16O and 12C180 have been measured, using very high resolving power and more accurate wavelength calibrations than previously. The molecular rotational and vibrational constants have been deduced and compared in relation to the mass differences between these molecules and the main species 12C160.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotational structure has been resolved and analyzed in two of the infrared‐active perpendicular bands of C2H4 vapor: the Type b fundamental band, ν10, at 826 cm—1, and the Type c fundamental band, ν7, at 949 cm—1. Many of the individual PP and RR branch lines have been observed. The analysis has been confined to values of the quantum number K≥3, for which energy levels ethylene shows no detectable deviations from a symmetric‐top rotational structure. The analysis reveals a Coriolis interaction between ν7 and ν10, and between ν4 and ν10, and values of the Coriolis constants ζ7,10z and ζ4,10y are obtained; these are related to normal coordinate calculations for the appropriate symmetry species, and force constants are derived to fit the observed zeta constants. The band center of ν10 has been revised from the original figure of 810 cm—1 to the new value, 826 cm—1, and the inactive frequency ν4 is estimated to lie at 1023±3 cm—1, in good agreement with the previous estimate of 1027 cm—1. The change in the value of ν10 leads to a suggested change in the value of the Raman‐active fundamental ν6 from 1236 to 1222 cm—1. New combination bands have been observed at 2174 cm—1, assigned as ν3+ν10; and at 2252 cm—1, assigned as ν4+ν6; also rotational structure has been resolved and analyzed in the ν6+ν10 band at 2048 cm—1. The new data obtained for the C2H4 molecule are summarized in Table XII, with all of the other data presently available on the vibrational and rotational constants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mizushima and Venkateswarlu showed in 1953 that certain molecules have the property that excited vibrational states may possess rotational spectra even when the rotational spectrum of the ground vibrational state is forbidden by symmetry. We call such a spectrum a vibrationally induced rotational spectrum, and have made a systematic examination of the point groups which permit such behaviour. We also give formulae for the approximate line frequencies and intensities in these spectra, and discuss some of the problems involved in observing them. The spectra can only arise from degenerate vibrational states, and are of three possible types: i) symmetric top perpendicular spectra, shown by molecules belonging to the point groups Dnh, Dn and Cnh, where n is odd; (ii) symmetric top parallel spectra, shown by molecules belonging to Dnd and S2n, where n is even; and (iii) spherical top spectra, shown by molecules belonging to T or Td. Excited vibrational states of polar molecules of point groups Cnv or Cn, where n is odd, may also possess vibrationally induced perpendicular components of type (i), in addition to their ordinary parallel spectra. In addition to the above limitations on the point groups there are, in general, limitations on the symmetry species of the degenerate vibrational states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variation calculations of the vibration–rotation energy levels of many isotopomers of HCN are reported, for J=0, 1, and 2, extending up to approximately 8 quanta of each of the stretching vibrations and 14 quanta of the bending mode. The force field, which is represented as a polynomial expansion in Morse coordinates for the bond stretches and even powers of the angle bend, has been refined by least squares to fit simultaneously all observed data on the Σ and Π state vibrational energies, and the Σ state rotational constants, for both HCN and DCN. The observed vibrational energies are fitted to roughly ±0.5 cm−1, and the rotational constants to roughly ±0.0001 cm−1. The force field has been used to predict the vibration rotation spectra of many isotopomers of HCN up to 25 000 cm−1. The results are consistent with the axis‐switching assignments of some weak overtone bands reported recently by Jonas, Yang, and Wodtke, and they also fit and provide the assignment for recent observations by Romanini and Lehmann of very weak absorption bands above 20 000 cm−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High resolution infrared spectra of the ν9 and ν10 perpendicular fundamentals of the allene molecule are reported, in which the J structure in the sub-bands has been partially resolved. Analysis of the latter shows that the vibrational origin ν9 = 999 cm−1, some 35 cm−1 below previous assignments. The pronounced asymmetry in the intensity distribution of the rotational structure which this assignment implies is shown to be expected theoretically, due to the Coriolis perturbations involved, and it is interpreted in terms of the sign and magnitude of the ratio of the dipole moment derivatives in the two fundamentals. The results of this analysis are shown to be in good agreement with observations on allene-1.1-d2, where similar intensity perturbations are observed, and with an independent analysis of the ν8 band of allene-h4. The A rotational constant of allene-h4 is found to have the value 4.82 ± 0.01 cm−1, and for the molecular geometry we obtain r(CH) = 1.084 A, r(CC) = 1.308 A, and HCH = 118.4°. A partial analysis of the rotational structure of the hot bands (ν9 + ν11 − ν11) and (ν10 + ν11 − ν11) is presented; these provide an example of a strong Coriolis interaction between nearly degenerate A1A2 and B1B2 pairs of vibrational levels. Some localized rotational perturbations in the ν9 and ν10 fundamentals are also noted, and their possible interpretations are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared spectra of thoformaldehyde, H2CS and D2CS, were observed in the gas phase at a resolution of better than 0.1 cm−1 from 4000 to 400 cm−1 using a Nicolet FTIR system. Vibrational band origins and rotational constants were determined for ν2, ν3, ν4, and ν6 of H2CS and for ν1, ν2, ν3, ν4, and ν6 of D2CS. The ν3, ν4, and ν6 bands of H2CS were analyzed as a set of three Coriolis interacting bands, and three Coriolis constants were determined; similarly the ν4 and ν6 bands of D2CS were analyzed as a pair of interacting bands and one Coriolis constant was determined. A general harmonic force field was determined, without constraints, to fit the vibrational wavenumbers, Coriolis constants, and centrifugal distortion constants. A zero-point (rz) structure was determined from the ground-state rotational constants, and the equilibrium (re) bond lengths were estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotational structure has been resolved and analyzed in the 1049-cm−1 parallel fundamental and the 1182 cm−1 perpendicular fundamental bands in the infrared spectrum of the CH3F molecule. Combination bands at 2223 cm−1 and around 2650 cm−1 have also been studied. The effective resolving power of the spectrometer was 0.25 cm−1 for all these bands. The two long-wavelength fundamentals have been analyzed in much greater detail than in previous work, and a complete analysis of the perpendicular band has been made, including the J-structure in the P and R branches of the sub-bands. Rotational constants of CH3F determined in this work and elsewhere are summarized in Table XIII of the text. Some anomalous intensity perturbations in the rotation lines of the 1182-cm−1 fundamental have been observed, and are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Newly observed data on the rotational constants of carbon suboxide in excited vibrational states of the low-wavenumber bending vibration ν7 have been successfully interpreted in terms of the two-dimensional anharmonic oscillator wavefunctions associated with this vibration. By combining these results with published infrared and Raman spectra the vibrational assignment has been extended and a refined bending potential for ν7 has been derived: this has a minimum at a bending angle of about 24° at the central C atom, with an energy maximum at the linear configuration some 23 cm−1 above the minimum. From similar data on the combination and hot bands of ν7 with ν4 (1587 cm−1) and ν2 (786 cm−1) the effective ν7 bending potential has also been determined in the one-quantum excited states of ν4 and ν2. The effective ν7 potential shows significant changes from the ground vibrational state; the central hump in the ν7 potential surface is increased to about 50 cm−1 in the v4 = 1 state, and decreased to about 1 cm−1 in the v2 = 1 state. In the light of these results vibrational assignments are suggested for most of the observed bands in the infrared and Raman spectra of C3O2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution vibration-rotation spectra of monofluoroacetylene are reported for many bands in the region 1700 to 7500 cm−1. The spectra were observed on Nicolet 7199 and Bruker IFS 120 Fourier spectrometers, with resolutions of about 0.06 and 0.003 cm−1, respectively. About 130 bands have been observed in this region, of which about 80 have been rotationally analyzed. The assignment of vibrational labels to the higher energy levels is complicated by the effects of strong Fermi resonances, and many weak localized rotational resonances are observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ir absorption of gaseous 15NH3 between 510 and 3040 cm−1 was recorded with a resolution of 0.06 cm−1. The ν2, 2ν2, 3ν2, ν4, and ν2 + ν4 bands were measured and analyzed on the basis of the vibration-rotation Hamiltonian developed by V. Špirko, J. M. R. Stone, and D. Papoušek (J. Mol. Spectrosc. 60, 159–178 (1976)). A set of effective molecular parameters for the ν2 = 1, 2, 3 states was derived, which reproduced the transition frequencies within the accuracy of the experimental measurements. For ν4 and ν2 + ν4 bands the standard deviation of the calculated spectrum is about four times larger than the measurements accuracy: a similar result was found for ν4 in 14NH3 by Š. Urban et al. (J. Mol. Spectrosc. 79, 455–495 (1980)). This result suggests that the present treatment takes into account only the most significant part of the rovibration interaction in the doubly degenerate vibrational states of ammonia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution infrared and near-infrared spectra have been observed for more than 80 overtone bands of the HCCF molecule, including two CH stretching overtones in the visible region. Many of these have been analysed, and many more are in the course of analysis and will be reported later. All fundamentals have now been rotationally analysed and the equilibrium rotational constant determined. These data provide a testing ground for anharmonic force-field analyses, and they are discussed briefly in this connection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The infrared spectrum of carbon suboxide has been recorded from 1800 to 2600 cm−1 at a resolution of 0.003 cm−1. About 7% of the ca. 40 000 lines observed have been assigned and analyzed, belonging to 36 different bands. Most of these are associated with the fundamental ν3, at 2289.80 cm−1, and the combination band ν2 + ν4, at 2386.61 cm−1, each of which give rise to a system of sum bands, difference bands, and hot bands involving the low-wave-number fundamental ν7 at 18 cm−1. A few other tentative assignments are made. The bands have been analyzed for vibrational and rotational constants.