8 resultados para robustness
em CentAUR: Central Archive University of Reading - UK
Resumo:
The externally recorded electroencephalogram (EEG) is contaminated with signals that do not originate from the brain, collectively known as artefacts. Thus, EEG signals must be cleaned prior to any further analysis. In particular, if the EEG is to be used in online applications such as Brain-Computer Interfaces (BCIs) the removal of artefacts must be performed in an automatic manner. This paper investigates the robustness of Mutual Information based features to inter-subject variability for use in an automatic artefact removal system. The system is based on the separation of EEG recordings into independent components using a temporal ICA method, RADICAL, and the utilisation of a Support Vector Machine for classification of the components into EEG and artefact signals. High accuracy and robustness to inter-subject variability is achieved.
Resumo:
In this paper we analyse applicability and robustness of Markov chain Monte Carlo algorithms for eigenvalue problems. We restrict our consideration to real symmetric matrices. Almost Optimal Monte Carlo (MAO) algorithms for solving eigenvalue problems are formulated. Results for the structure of both - systematic and probability error are presented. It is shown that the values of both errors can be controlled independently by different algorithmic parameters. The results present how the systematic error depends on the matrix spectrum. The analysis of the probability error is presented. It shows that the close (in some sense) the matrix under consideration is to the stochastic matrix the smaller is this error. Sufficient conditions for constructing robust and interpolation Monte Carlo algorithms are obtained. For stochastic matrices an interpolation Monte Carlo algorithm is constructed. A number of numerical tests for large symmetric dense matrices are performed in order to study experimentally the dependence of the systematic error from the structure of matrix spectrum. We also study how the probability error depends on the balancing of the matrix. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The robustness of state feedback solutions to the problem of partial pole placement obtained by a new projection procedure is examined. The projection procedure gives a reduced-order pole assignment problem. It is shown that the sensitivities of the assigned poles in the complete closed-loop system are bounded in terms of the sensitivities of the assigned reduced-order poles, and the sensitivities of the unaltered poles are bounded in terms of the sensitivities of the corresponding open-loop poles. If the assigned poles are well-separated from the unaltered poles, these bounds are expected to be tight. The projection procedure is described in [3], and techniques for finding robust (or insensitive) solutions to the reduced-order problem are given in [1], [2].
Resumo:
The aim of this study was, within a sensitivity analysis framework, to determine if additional model complexity gives a better capability to model the hydrology and nitrogen dynamics of a small Mediterranean forested catchment or if the additional parameters cause over-fitting. Three nitrogen-models of varying hydrological complexity were considered. For each model, general sensitivity analysis (GSA) and Generalized Likelihood Uncertainty Estimation (GLUE) were applied, each based on 100,000 Monte Carlo simulations. The results highlighted the most complex structure as the most appropriate, providing the best representation of the non-linear patterns observed in the flow and streamwater nitrate concentrations between 1999 and 2002. Its 5% and 95% GLUE bounds, obtained considering a multi-objective approach, provide the narrowest band for streamwater nitrogen, which suggests increased model robustness, though all models exhibit periods of inconsistent good and poor fits between simulated outcomes and observed data. The results confirm the importance of the riparian zone in controlling the short-term (daily) streamwater nitrogen dynamics in this catchment but not the overall flux of nitrogen from the catchment. It was also shown that as the complexity of a hydrological model increases over-parameterisation occurs, but the converse is true for a water quality model where additional process representation leads to additional acceptable model simulations. Water quality data help constrain the hydrological representation in process-based models. Increased complexity was justifiable for modelling river-system hydrochemistry. Increased complexity was justifiable for modelling river-system hydrochemistry.
Resumo:
Debate over the late Quaternary megafaunal extinctions has focussed on whether human colonisation or climatic changes were more important drivers of extinction, with few extinctions being unambiguously attributable to either. Most analyses have been geographically or taxonomically restricted and the few quantitative global analyses have been limited by coarse temporal resolution or overly simplified climate reconstructions or proxies. We present a global analysis of the causes of these extinctions which uses high-resolution climate reconstructions and explicitly investigates the sensitivity of our results to uncertainty in the palaeological record. Our results show that human colonisation was the dominant driver of megafaunal extinction across the world but that climatic factors were also important. We identify the geographic regions where future research is likely to have the most impact, with our models reliably predicting extinctions across most of the world, with the notable exception of mainland Asia where we fail to explain the apparently low rate of extinction found in in the fossil record. Our results are highly robust to uncertainties in the palaeological record, and our main conclusions are unlikely to change qualitatively following minor improvements or changes in the dates of extinctions and human colonisation.